This file is indexed.

/usr/share/perl5/Math/Symbolic/Derivative.pm is in libmath-symbolic-perl 0.612-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
=encoding utf8

=head1 NAME

Math::Symbolic::Derivative - Derive Math::Symbolic trees

=head1 SYNOPSIS

  use Math::Symbolic::Derivative qw/:all/;
  $derived = partial_derivative($term, $variable);
  # or:
  $derived = total_derivative($term, $variable);

=head1 DESCRIPTION

This module implements derivatives for Math::Symbolic trees.
Derivatives are Math::Symbolic::Operators, but their implementation
is drawn from this module because it is significantly more complex
than the implementation of most operators.

Derivatives come in two flavours. There are partial- and total derivatives.

Explaining the precise difference between partial- and total derivatives is
beyond the scope of this document, but in the context of Math::Symbolic,
the difference is simply that partial derivatives just derive in terms of
I<explicit> dependency on the differential variable while total derivatives
recongnize implicit dependencies from variable signatures.

Partial derivatives are faster, have been tested more thoroughly, and
are probably what you want for simpler applications anyway.

=head2 EXPORT

None by default. But you may choose to import the total_derivative()
and partial_derivative() functions.

=cut

package Math::Symbolic::Derivative;

use 5.006;
use strict;
use warnings;
no warnings 'recursion';

use Carp;

use Math::Symbolic::ExportConstants qw/:all/;

require Exporter;

our @ISA = qw(Exporter);

our %EXPORT_TAGS = (
    'all' => [
        qw(
          &total_derivative
          &partial_derivative
          )
    ]
);

our @EXPORT_OK = ( @{ $EXPORT_TAGS{'all'} } );

our @EXPORT = qw();

our $VERSION = '0.612';

=head1  CLASS DATA

The package variable %Partial_Rules contains partial
derivative rules as key-value pairs of names and subroutines.

=cut

# lookup-table for derivative rules for various operators.
our %Rules = (
    'each operand'                      => \&_each_operand,
    'product rule'                      => \&_product_rule,
    'quotient rule'                     => \&_quotient_rule,
    'logarithmic chain rule after ln'   => \&_logarithmic_chain_rule_after_ln,
    'logarithmic chain rule'            => \&_logarithmic_chain_rule,
    'derivative commutation'            => \&_derivative_commutation,
    'trigonometric derivatives'         => \&_trigonometric_derivatives,
    'inverse trigonometric derivatives' => \&_inverse_trigonometric_derivatives,
    'inverse atan2'                     => \&_inverse_atan2,
);

# References to derivative subroutines
# Will be assigned a reference after subroutine compilation.
our $Partial_Sub;
our $Total_Sub;

our @Constant_Simplify = (
    # B_SUM
    sub {
        my $tree = shift;
        my ($op1, $op2) = @{$tree->{operands}};
        my ($t1, $t2) = ($op1->term_type(), $op2->term_type());
        if ($t1 == T_CONSTANT) {
            return $op2 if $op1->{value} == 0;
            if ($t2 == T_CONSTANT) {
                return Math::Symbolic::Constant->new($op1->{value} + $op2->{value});
            }
        }
        elsif ($t2 == T_CONSTANT) {
            return $op1 if $op2->{value} == 0;
        }

        return $tree;
    },

    # B_DIFFERENCE
    sub {
        my $tree = shift;
        my ($op1, $op2) = @{$tree->{operands}};
        my ($t1, $t2) = ($op1->term_type(), $op2->term_type());
        if ($t1 == T_CONSTANT) {
            $op2 *= -1, return $op2 if $op1->{value} == 0;
            if ($t2 == T_CONSTANT) {
                return Math::Symbolic::Constant->new($op1->{value} - $op2->{value});
            }
        }
        elsif ($t2 == T_CONSTANT) {
            return $op1 if $op2->{value} == 0;
            $op2->{value} *= -1;
            return Math::Symbolic::Operator->new('+', $op1, $op2);
        }
        return $tree;
    },
    
    # B_PRODUCT
    undef, # implemented inline
    # B_DIVISION
    undef, # not implemented

    # U_MINUS
    sub {
        my $tree = shift;
        my $op = $tree->{operands}[0];
        if ($op->term_type == T_CONSTANT) {
            return Math::Symbolic::Constant->new(-$op->{value});
        }
        return $tree;
    },

    #... not implemented
);

=begin comment

The following subroutines are helper subroutines that apply a
specific rule to a tree.

=end comment

=cut

sub _each_operand {
    my ( $tree, $var, $cloned, $d_sub ) = @_;
    foreach ( @{ $tree->{operands} } ) {
        $_ = $d_sub->( $_, $var, 1 );
    }

    my $type = $tree->type();
    my $simplifier = $Constant_Simplify[$type];
    return $simplifier->($tree) if $simplifier;

    return $tree;
}


sub _product_rule {
    my ( $tree, $var, $cloned, $d_sub ) = @_;
    my $ops = $tree->{operands};
    my ($o1, $o2) = @$ops;
    my ($to1, $to2) = ($o1->term_type(), $o2->term_type());

    # one of the terms is a constant, don't derive it
    if ($to1 == T_CONSTANT) {
        return Math::Symbolic::Constant->zero() if $o1->{value} == 0;
        my $deriv = $d_sub->( $o2, $var, 0 );
        return $deriv if $o1->{value} == 0;
        return Math::Symbolic::Constant->new($deriv->{value}*$o1->{value})
          if $deriv->term_type == T_CONSTANT;
    }
    if ($to2 == T_CONSTANT) {
        return Math::Symbolic::Constant->zero() if $o2->{value} == 0;
        my $deriv = $d_sub->( $o1, $var, 0 );
        return $deriv if $o2->{value} == 0;
        return Math::Symbolic::Constant->new($deriv->{value}*$o2->{value})
          if $deriv->term_type == T_CONSTANT;
    }
    
    my $do1 = $d_sub->( $o1, $var, 0 );
    my $do2 = $d_sub->( $o2, $var, 0 );

    my ($tdo1, $tdo2) = ($do1->term_type(), $do2->term_type());

    my ($m1, $m2);
    # check for const*const
    if ($tdo1 == T_CONSTANT) {
        if ($to2 == T_CONSTANT) {
            $m1 = $do1->new($o2->{value} * $do1->{value}); # const
        } elsif ($do1->{value} == 0) {
            $m1 = $do1->zero(); # 0
        } elsif ($do1->{value} == 1) {
            $m1 = $o2;
        } else {
            $m1 = $do1*$o2; # c*tree
        }
    }
    else {
        $m1 = $o2*$do1;
    }

    if ($tdo2 == T_CONSTANT) {
        if ($to1 == T_CONSTANT) {
            $m2 = $do2->new($o1->{value} * $do2->{value}); # const
        } elsif ($do2->{value} == 0) {
            $m2 = $do2->zero(); # 0
        } elsif ($do2->{value} == 1) {
            $m2 = $o1;
        } else {
            $m2 = $do2*$o1; # c*tree
        }
    }
    else {
        $m2 = $o1*$do2;
    }

    # 0's or 2 consts in +
    if ($m1->term_type == T_CONSTANT) {
        return $m2 if $m1->{value} == 0;
        if ($m2->term_type == T_CONSTANT) {
            return $m2->new($m1->{value}*$m2->{value});
        }
    }
    elsif ($m2->term_type == T_CONSTANT) {
        return $m1 if $m2->{value} == 0;
    }

    return Math::Symbolic::Operator->new( '+', $m1, $m2 );
}

sub _quotient_rule {
    my ( $tree, $var, $cloned, $d_sub ) = @_;

    my ($op1, $op2) = @{$tree->{operands}};

    my ($do1, $do2);

    # y = f(x)/c; y' = f'/c
    if ($op2->is_simple_constant()) {
        $do1 = $d_sub->( $op1, $var, 0 );
        my $val = $op2->value();

        if ($val == 0) {
            return $tree->new('/', $do1, $op2->new()); # inf!
        }
        elsif ($val == 1) {
            return $do1; # f/1
        }
        return $tree->new('*', Math::Symbolic::Constant->new(1/$val), $do1);
    }
    # y = c/f(x) => y' = -c*f'(x)/f^2(x)
    elsif ($op1->is_simple_constant()) {
        $do2 = $d_sub->( $op2, $var, 0 );
        my $val = $op1->value();
        
        if ($val == 0) {
            return Math::Symbolic::Constant->zero(); # 0*f'/f
        }

        my $tdo2 = $do2->term_type();
        if ($tdo2 == T_CONSTANT) {
            return $do2->zero() if $do2->{value} == 0; # c*0/f
            return $tree->new(
                '/', $do2->new(-1.*$val*$do2->{value}),
                     $tree->new('^', $op2, 2)
            );
        }
        else {
            return $tree->new(
                '*', Math::Symbolic::Constant->new(-1*$val),
                $tree->new('/', $do2, $tree->new('^', $op2, Math::Symbolic::Constant->new(2)))
            )
        }
    }

    $do1 = $d_sub->( $op1, $var, 0 ) if not $do1;
    $do2 = $d_sub->( $op2, $var, 0 ) if not $do2;

    my $m1  = Math::Symbolic::Operator->new( '*', $do1, $op2 );
    my $m2  = Math::Symbolic::Operator->new( '*', $op1, $do2 );

    # f' = 0
    if ($do1->is_zero()) {
        $m1 = undef;
    }
    # f' = 1
    elsif ($do1->is_one()) {
        $m1 = $op2->new();
    }

    # g' = 0
    if ($do2->is_zero()) {
        $m2 = undef;
    }
    elsif ($do2->is_one()) {
        $m2 = $op1->new();
    }

    my $upper;
    # -g'f / g^2
    if (not defined $m1) {
        # f'=g'=0
        return Math::Symbolic::Constant->zero() if not defined $m2;
        $upper = $tree->new('neg', $m2);
    }
    # f'g / g^2 = f'/g
    elsif (not defined $m2) {
        return $tree->new('/', $do1, $op2);
    }

    my $m3 = $tree->new('^', $op2, Math::Symbolic::Constant->new(2));
    if (not defined $upper) {
      $upper = Math::Symbolic::Operator->new( '-', $m1, $m2 );
    }
    return Math::Symbolic::Operator->new( '/', $upper, $m3 );
}

sub _logarithmic_chain_rule_after_ln {
    my ( $tree, $var, $cloned, $d_sub ) = @_;

    # y(x)=u^v
    # y'(x)=y*(d/dx ln(y))
    # y'(x)=y*(d/dx (v*ln(u)))
    my ($u, $v) = @{$tree->{operands}};

    # This is a special case:
    # y(x)=u^CONST
    # y'(x)=CONST*y* d/dx ln(u)
    # y'(x)=CONST*y* u' / u
    if ($v->term_type() == T_CONSTANT) {

        # y=VAR^CONST
        if ($u->term_type() == T_VARIABLE) {
            my $d = $d_sub->($u, $var, 0);
            my $dtt = $d->term_type();
            if ($dtt == T_CONSTANT) {
                # not our var
                return Math::Symbolic::Constant->zero() if $d->{value} == 0;
                # our var
                return Math::Symbolic::Constant->one() if $v->{value} == 1;
                return $tree->new('*', $v->new(), $u->new()) if $v->{value} == 2;
                return $tree->new('*', $v->new(), $tree->new('^', $u->new(), $v->new($v->{value}-1)));
            }
            # otherwise: signature contains $var
        }
        return Math::Symbolic::Operator->new(
            '*', 
            Math::Symbolic::Operator->new(
                '*', $v->new(), $tree
            ),
            Math::Symbolic::Operator->new(
                '/', $d_sub->($u, $var, 0), $u->new()
            )
        );
    }

    my $e    = Math::Symbolic::Constant->euler();
    my $ln   = Math::Symbolic::Operator->new( 'log', $e, $u );
    my $mul1 = $ln->new( '*', $v, $ln );
    my $dmul = $d_sub->( $mul1, $var, 0 );
    $tree = $ln->new( '*', $tree, $dmul );
    return $tree;
}

sub _logarithmic_chain_rule {
    my ( $tree, $var, $cloned, $d_sub ) = @_;

    #log_a(y(x))=>y'(x)/(ln(a)*y(x))
    my ($a, $y) = @{$tree->{operands}};
    my $dy  = $d_sub->( $y, $var, 0 );

    # This would be y'/y
    if ($a->term_type() == T_CONSTANT and $a->{special} eq 'euler') {
        return Math::Symbolic::Operator->new('/', $dy, $y);
    }
    
    my $e    = Math::Symbolic::Constant->euler();
    my $ln   = Math::Symbolic::Operator->new( 'log', $e, $a );
    my $mul1 = $ln->new( '*', $ln, $y->new() );
    $tree = $ln->new( '/', $dy, $mul1 );
    return $tree;
}

sub _derivative_commutation {
    my ( $tree, $var, $cloned, $d_sub ) = @_;
    $tree->{operands}[0] = $d_sub->( $tree->{operands}[0], $var, 0 );
    return $tree;
}

sub _trigonometric_derivatives {
    my ( $tree, $var, $cloned, $d_sub ) = @_;
    my $op = Math::Symbolic::Operator->new();
    my $d_inner = $d_sub->( $tree->{operands}[0], $var, 0 );
    my $trig;
    my $type = $tree->type();
    if ( $type == U_SINE ) {
        $trig = $op->new( 'cos', $tree->{operands}[0] );
    }
    elsif ( $type == U_COSINE ) {
        $trig = $op->new( 'neg', $op->new( 'sin', $tree->{operands}[0] ) );
    }
    elsif ( $type == U_SINE_H ) {
        $trig = $op->new( 'cosh', $tree->{operands}[0] );
    }
    elsif ( $type == U_COSINE_H ) {
        $trig = $op->new( 'sinh', $tree->{operands}[0] );
    }
    elsif ( $type == U_TANGENT or $type == U_COTANGENT ) {
        $trig = $op->new(
            '/',
            Math::Symbolic::Constant->one(),
            $op->new(
                '^',
                $op->new( 'cos', $tree->op1() ),
                Math::Symbolic::Constant->new(2)
            )
        );
        $trig = $op->new( 'neg', $trig ) if $type == U_COTANGENT;
    }
    else {
        die "Trigonometric derivative applied to invalid operator.";
    }
    if ($d_inner->term_type() == T_CONSTANT) {
        my $spec = $d_inner->special();
        if ($spec eq 'zero') {
            return $d_inner;
        }
        elsif ($spec eq 'one') {
            return $trig;
        }
    }
    return $op->new( '*', $d_inner, $trig );
}

sub _inverse_trigonometric_derivatives {
    my ( $tree, $var, $cloned, $d_sub ) = @_;
    my $op = Math::Symbolic::Operator->new();
    my $d_inner = $d_sub->( $tree->{operands}[0], $var, 0 );
    my $trig;
    my $type = $tree->type();
    if ( $type == U_ARCSINE or $type == U_ARCCOSINE ) {
        my $one = $type == U_ARCSINE
            ? Math::Symbolic::Constant->one()
            : Math::Symbolic::Constant->new(-1);
        $trig = $op->new( '/', $one,
            $op->new( '-', $one->new(1), $op->new( '^', $tree->op1(), $one->new(2) ) )
        );
    }
    elsif ($type == U_ARCTANGENT
        or $type == U_ARCCOTANGENT )
    {
        my $one = $type == U_ARCTANGENT
            ? Math::Symbolic::Constant->one()
            : Math::Symbolic::Constant->new(-1);
        $trig = $op->new( '/', $one,
            $op->new( '+', $one->new(1), $op->new( '^', $tree->op1(), $one->new(2) ) )
        );
    }
    elsif ($type == U_AREASINE_H
        or $type == U_AREACOSINE_H )
    {
        my $one = Math::Symbolic::Constant->one();
        $trig = $op->new(
            '/', $one,
            $op->new(
                '^',
                $op->new(
                    ( $tree->type() == U_AREASINE_H ? '+' : '-' ),
                    $op->new( '^', $tree->op1(), $one->new(2) ),
                    $one
                ),
                $one->new(0.5)
            )
        );
    }
    else {
        die "Inverse trig. derivative applied to invalid operator.";
    }

    if ($d_inner->term_type() == T_CONSTANT) {
        my $spec = $d_inner->special();
        if ($spec eq 'zero') {
            return $d_inner;
        }
        elsif ($spec eq 'one') {
            return $trig;
        }
    }
    return $op->new( '*', $d_inner, $trig );
}

sub _inverse_atan2 {
    my ( $tree, $var, $cloned, $d_sub ) = @_;
    # d/df atan(y/x) = x^2/(x^2+y^2) * (d/df y/x)
    my ($op1, $op2) = @{$tree->{operands}}; 

    my $inner = $d_sub->( $op1->new()/$op2->new(), $var, 0 );
    # templates
    my $two = Math::Symbolic::Constant->new(2);
    my $op  = Math::Symbolic::Operator->new('+', $two, $two);

    my $result = $op->new('*',
      $op->new('/',
        $op->new('^', $op2->new(), $two->new()), 
        $op->new(
          '+', $op->new('^', $op2->new(), $two->new()),
          $op->new('^', $op1->new(), $two->new())
        )
      ),
      $inner
    );
    return $result;
}

=head1 SUBROUTINES

=cut

=head2 partial_derivative

Takes a Math::Symbolic tree and a Math::Symbolic::Variable as argument.
third argument is an optional boolean indicating whether or not the
tree has to be cloned before being derived. If it is true, the
subroutine happily stomps on any code that might rely on any components
of the Math::Symbolic tree that was passed to the sub as first argument.

=cut

sub partial_derivative {
    my $tree = shift;
    my $var  = shift;
    defined $var or die "Cannot derive using undefined variable.";
    if ( ref($var) eq '' ) {
        $var = Math::Symbolic::parse_from_string($var);
        croak "2nd argument to partial_derivative must be variable."
          if ( ref($var) ne 'Math::Symbolic::Variable' );
    }
    else {
        croak "2nd argument to partial_derivative must be variable."
          if ( ref($var) ne 'Math::Symbolic::Variable' );
    }

    my $cloned = shift;

    if ( not $cloned ) {
        $tree   = $tree->new();
        $cloned = 1;
    }

    if ( $tree->term_type() == T_OPERATOR ) {
        my $rulename =
          $Math::Symbolic::Operator::Op_Types[ $tree->type() ]->{derive};
        my $subref = $Rules{$rulename};

        die "Cannot derive using rule '$rulename'."
          unless defined $subref;
        $tree = $subref->( $tree, $var, $cloned, $Partial_Sub );
    }
    elsif ( $tree->term_type() == T_CONSTANT ) {
        $tree = Math::Symbolic::Constant->zero();
    }
    elsif ( $tree->term_type() == T_VARIABLE ) {
        if ( $tree->name() eq $var->name() ) {
            $tree = Math::Symbolic::Constant->one;
        }
        else {
            $tree = Math::Symbolic::Constant->zero;
        }
    }
    else {
        die "Cannot apply partial derivative to anything but a tree.";
    }

    return $tree;
}

=head2 total_derivative

Takes a Math::Symbolic tree and a Math::Symbolic::Variable as argument.
third argument is an optional boolean indicating whether or not the
tree has to be cloned before being derived. If it is true, the
subroutine happily stomps on any code that might rely on any components
of the Math::Symbolic tree that was passed to the sub as first argument.

=cut

sub total_derivative {
    my $tree = shift;
    my $var  = shift;
    defined $var or die "Cannot derive using undefined variable.";
    if ( ref($var) eq '' ) {
        $var = Math::Symbolic::parse_from_string($var);
        croak "Second argument to total_derivative must be variable."
          if ( ref($var) ne 'Math::Symbolic::Variable' );
    }
    else {
        croak "Second argument to total_derivative must be variable."
          if ( ref($var) ne 'Math::Symbolic::Variable' );
    }

    my $cloned = shift;

    if ( not $cloned ) {
        $tree   = $tree->new();
        $cloned = 1;
    }

    if ( $tree->term_type() == T_OPERATOR ) {
        my $var_name = $var->name();
        my @tree_sig = $tree->signature();
        if ( ( grep { $_ eq $var_name } @tree_sig ) > 0 ) {
            my $rulename =
              $Math::Symbolic::Operator::Op_Types[ $tree->type() ]->{derive};
            my $subref = $Rules{$rulename};

            die "Cannot derive using rule '$rulename'."
              unless defined $subref;
            $tree = $subref->( $tree, $var, $cloned, $Total_Sub );
        }
        else {
            $tree = Math::Symbolic::Constant->zero();
        }
    }
    elsif ( $tree->term_type() == T_CONSTANT ) {
        $tree = Math::Symbolic::Constant->zero();
    }
    elsif ( $tree->term_type() == T_VARIABLE ) {
        my $name     = $tree->name();
        my $var_name = $var->name();

        if ( $name eq $var_name ) {
            $tree = Math::Symbolic::Constant->one;
        }
        else {
            my @tree_sig = $tree->signature();
            my $is_dependent;
            foreach my $ident (@tree_sig) {
                if ( $ident eq $var_name ) {
                    $is_dependent = 1;
                    last;
                }
            }
            if ( $is_dependent ) {
                $tree =
                  Math::Symbolic::Operator->new( 'total_derivative', $tree,
                    $var );
            }
            else {
                $tree = Math::Symbolic::Constant->zero;
            }
        }
    }
    else {
        die "Cannot apply total derivative to anything but a tree.";
    }

    return $tree;
}

# Class data again.
$Partial_Sub = \&partial_derivative;
$Total_Sub   = \&total_derivative;

1;
__END__

=head1 AUTHOR

Please send feedback, bug reports, and support requests to the Math::Symbolic
support mailing list:
math-symbolic-support at lists dot sourceforge dot net. Please
consider letting us know how you use Math::Symbolic. Thank you.

If you're interested in helping with the development or extending the
module's functionality, please contact the developers' mailing list:
math-symbolic-develop at lists dot sourceforge dot net.

List of contributors:

  Steffen Müller, symbolic-module at steffen-mueller dot net
  Stray Toaster, mwk at users dot sourceforge dot net
  Oliver Ebenhöh

=head1 SEE ALSO

New versions of this module can be found on
http://steffen-mueller.net or CPAN. The module development takes place on
Sourceforge at http://sourceforge.net/projects/math-symbolic/

L<Math::Symbolic>

=cut