This file is indexed.

/usr/share/perl5/Math/Symbolic/Operator.pm is in libmath-symbolic-perl 0.612-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
=encoding utf8

=head1 NAME

Math::Symbolic::Operator - Operators in symbolic calculations

=head1 SYNOPSIS

  use Math::Symbolic::Operator;
  
  my $sum = Math::Symbolic::Operator->new('+', $term1, $term2);
  
  # or:
  my $division =
    Math::Symbolic::Operator->new(
      {
        type     => B_DIVISON,
        operands => [$term1, $term2],
      }
    );
  
  my $derivative =
    Math::Symbolic::Operator->new(
      {
        type     => U_P_DERIVATIVE,
        operands => [$term],
      }
    );

=head1 DESCRIPTION

This module implements all Math::Symbolic::Operator objects.
These objects are overloaded in stringification-context to call the
to_string() method on the object. In numeric and boolean context, they
evaluate to their numerical representation.

For a list of supported operators, please refer to the list found below, in the
documentation for the new() constructor.

Math::Symbolic::Operator inherits from Math::Symbolic::Base.

=head2 EXPORT

None.

=cut

package Math::Symbolic::Operator;

use 5.006;
use strict;
use warnings;
no warnings 'recursion';

use Carp;

use Math::Symbolic::ExportConstants qw/:all/;
use Math::Symbolic::Derivative qw//;

use base 'Math::Symbolic::Base';

our $VERSION = '0.612';

=head1 CLASS DATA

Math::Symbolic::Operator contains several class data structures. Usually, you
should not worry about dealing with any of them because they are mostly an
implementation detail, but for the sake of completeness, here's the gist, but
feel free to skip this section of the docs:

One of these is the %Op_Symbols hash that associates operator (and function)
symbols with the corresponding constant as exported by Math::Symbolic or
Math::Symbolic::ExportConstants. (For example, '+' => B_SUM which in turn is
0, if I recall correctly. But I didn't tell you that. Because you're supposed
to use the supplied (inlined and hence fast) constants so I can change their
internal order if I deem it necessary.)

=cut

our %Op_Symbols = (
    '+'                  => B_SUM,
    '-'                  => B_DIFFERENCE,
    '*'                  => B_PRODUCT,
    '/'                  => B_DIVISION,
    'log'                => B_LOG,
    '^'                  => B_EXP,
    'neg'                => U_MINUS,
    'partial_derivative' => U_P_DERIVATIVE,
    'total_derivative'   => U_T_DERIVATIVE,
    'sin'                => U_SINE,
    'cos'                => U_COSINE,
    'tan'                => U_TANGENT,
    'cot'                => U_COTANGENT,
    'asin'               => U_ARCSINE,
    'acos'               => U_ARCCOSINE,
    'atan'               => U_ARCTANGENT,
    'acot'               => U_ARCCOTANGENT,
    'sinh'               => U_SINE_H,
    'cosh'               => U_COSINE_H,
    'asinh'              => U_AREASINE_H,
    'acosh'              => U_AREACOSINE_H,
    'atan2'              => B_ARCTANGENT_TWO,
);

=pod

The array @Op_Types associates operator indices (recall those nifty constants?)
with anonymous hash datastructures that contain some info on the operator such
as its arity, the rule used to derive it, its infix string, its prefix string,
and information on how to actually apply it to numbers.

=cut

our @Op_Types = (

    # B_SUM
    {
        arity         => 2,
        derive        => 'each operand',
        infix_string  => '+',
        prefix_string => 'add',
        application   => '$_[0] + $_[1]',
        commutative   => 1,
    },

    # B_DIFFERENCE
    {
        arity         => 2,
        derive        => 'each operand',
        infix_string  => '-',
        prefix_string => 'subtract',
        application   => '$_[0] - $_[1]',
        #commutative   => 0,
    },

    # B_PRODUCT
    {
        arity         => 2,
        derive        => 'product rule',
        infix_string  => '*',
        prefix_string => 'multiply',
        application   => '$_[0] * $_[1]',
        commutative   => 1,
    },

    # B_DIVISION
    {
        derive        => 'quotient rule',
        arity         => 2,
        infix_string  => '/',
        prefix_string => 'divide',
        application   => '$_[0] / $_[1]',
        #commutative   => 0,
    },

    # U_MINUS
    {
        arity         => 1,
        derive        => 'each operand',
        infix_string  => '-',
        prefix_string => 'negate',
        application   => '-$_[0]',
    },

    # U_P_DERIVATIVE
    {
        arity         => 2,
        derive        => 'derivative commutation',
        infix_string  => undef,
        prefix_string => 'partial_derivative',
        application   => \&Math::Symbolic::Derivative::partial_derivative,
    },

    # U_T_DERIVATIVE
    {
        arity         => 2,
        derive        => 'derivative commutation',
        infix_string  => undef,
        prefix_string => 'total_derivative',
        application   => \&Math::Symbolic::Derivative::total_derivative,
    },

    # B_EXP
    {
        arity         => 2,
        derive        => 'logarithmic chain rule after ln',
        infix_string  => '^',
        prefix_string => 'exponentiate',
        application   => '$_[0] ** $_[1]',
        #commutative   => 0,
    },

    # B_LOG
    {
        arity         => 2,
        derive        => 'logarithmic chain rule',
        infix_string  => undef,
        prefix_string => 'log',
        application   => 'log($_[1]) / log($_[0])',
        #commutative   => 0,
    },

    # U_SINE
    {
        arity         => 1,
        derive        => 'trigonometric derivatives',
        infix_string  => undef,
        prefix_string => 'sin',
        application   => 'sin($_[0])',
    },

    # U_COSINE
    {
        arity         => 1,
        derive        => 'trigonometric derivatives',
        infix_string  => undef,
        prefix_string => 'cos',
        application   => 'cos($_[0])',
    },

    # U_TANGENT
    {
        arity         => 1,
        derive        => 'trigonometric derivatives',
        infix_string  => undef,
        prefix_string => 'tan',
        application   => 'sin($_[0])/cos($_[0])',
    },

    # U_COTANGENT
    {
        arity         => 1,
        derive        => 'trigonometric derivatives',
        infix_string  => undef,
        prefix_string => 'cot',
        application   => 'cos($_[0])/sin($_[0])',
    },

    # U_ARCSINE
    {
        arity         => 1,
        derive        => 'inverse trigonometric derivatives',
        infix_string  => undef,
        prefix_string => 'asin',
        #application   => 'Math::Symbolic::AuxFunctions::asin($_[0])',
        application   => 'atan2( $_[0], sqrt( 1 - $_[0] * $_[0] ) )',
    },

    # U_ARCCOSINE
    {
        arity         => 1,
        derive        => 'inverse trigonometric derivatives',
        infix_string  => undef,
        prefix_string => 'acos',
        application   => 'atan2( sqrt( 1 - $_[0] * $_[0] ), $_[0] ) ',
        #application   => 'Math::Symbolic::AuxFunctions::acos($_[0])',
    },

    # U_ARCTANGENT
    {
        arity         => 1,
        derive        => 'inverse trigonometric derivatives',
        infix_string  => undef,
        prefix_string => 'atan',
        application   => 'atan2($_[0], 1)',
        #application   => 'Math::Symbolic::AuxFunctions::atan($_[0])',
    },

    # U_ARCCOTANGENT
    {
        arity         => 1,
        derive        => 'inverse trigonometric derivatives',
        infix_string  => undef,
        prefix_string => 'acot',
        application   => 'atan2(1 / $_[0], 1)',
        #application   => 'Math::Symbolic::AuxFunctions::acot($_[0])',
    },

    # U_SINE_H
    {
        arity         => 1,
        derive        => 'trigonometric derivatives',
        infix_string  => undef,
        prefix_string => 'sinh',
        #application   => '0.5*(EULER**$_[0] - EULER**(-$_[0]))',
        application   => '0.5*('.EULER.'**$_[0] - '.EULER.'**(-$_[0]))',
    },

    # U_COSINE_H
    {
        arity         => 1,
        derive        => 'trigonometric derivatives',
        infix_string  => undef,
        prefix_string => 'cosh',
        application   => '0.5*('.EULER.'**$_[0] + '.EULER.'**(-$_[0]))',
        #application   => '0.5*(EULER**$_[0] + EULER**(-$_[0]))',
    },

    # U_AREASINE_H
    {
        arity         => 1,
        derive        => 'inverse trigonometric derivatives',
        infix_string  => undef,
        prefix_string => 'asinh',
        application   => 'log( $_[0] + sqrt( $_[0] * $_[0] + 1 ) ) ',
        #application   => 'Math::Symbolic::AuxFunctions::asinh($_[0])',
    },

    # U_AREACOSINE_H
    {
        arity         => 1,
        derive        => 'inverse trigonometric derivatives',
        infix_string  => undef,
        prefix_string => 'acosh',
        application   => 'log( $_[0] + sqrt( $_[0] * $_[0] - 1 ) ) ',
        #application   => 'Math::Symbolic::AuxFunctions::acosh($_[0])',
    },

    # B_ARCTANGENT_TWO
    {
        arity         => 2,
        derive        => 'inverse atan2',
        infix_string  => undef,
        prefix_string => 'atan2',
        application   => 'atan2($_[0], $_[1])',
        #application   => 'Math::Symbolic::AuxFunctions::atan($_[0])',
        #commutative   => 0,
    },

);

=head1 METHODS

=head2 Constructor new

Expects a hash reference as first argument. That hash's contents
will be treated as key-value pairs of object attributes.
Important attributes are 'type' => OPERATORTYPE (use constants as
exported by Math::Symbolic::ExportConstants!) and 'operands=>[op1,op2,...]'.
Where the operands themselves may either be valid Math::Symbolic::* objects
or strings that will be parsed as such.

Special case: if no hash reference was found, first
argument is assumed to be the operator's symbol and the operator
is assumed to be binary. The following 2 arguments will be treated as
operands. This special case will ignore attempts to clone objects but if
the operands are no valid Math::Symbolic::* objects, they will be sent
through a Math::Symbolic::Parser to construct Math::Symbolic trees.

Returns a Math::Symbolic::Operator.

Supported operator symbols: (number of operands and their
function in parens)

  +                  => sum (2)
  -                  => difference (2)
  *                  => product (2)
  /                  => division (2)
  log                => logarithm (2: base, function)
  ^                  => exponentiation (2: base, exponent)
  neg                => unary minus (1)
  partial_derivative => partial derivative (2: function, var)
  total_derivative   => total derivative (2: function, var)
  sin                => sine (1)
  cos                => cosine (1)
  tan                => tangent (1)
  cot                => cotangent (1)
  asin               => arc sine (1)
  acos               => arc cosine (1)
  atan               => arc tangent (1)
  atan2              => arc tangent of y/x (2: y, x)
  acot               => arc cotangent (1)
  sinh               => hyperbolic sine (1)
  cosh               => hyperbolic cosine (1)
  asinh              => hyperbolic area sine (1)
  acosh              => hyperbolic area cosine (1)

=cut

sub new {
    my $proto = shift;
    my $class = ref($proto) || $proto;

    if ( @_ and not( ref( $_[0] ) eq 'HASH' ) ) {
        my $symbol = shift;
        my $type   = $Op_Symbols{$symbol};
        croak "Invalid operator type specified ($symbol)."
          unless defined $type;
        my $operands = [ @_[ 0 .. $Op_Types[$type]{arity} - 1 ] ];

        croak "Undefined operands not supported by "
          . "Math::Symbolic::Operator objects."
          if grep +( not defined($_) ), @$operands;

        @$operands =
          map {
            ref($_) =~ /^Math::Symbolic/
              ? $_
              : Math::Symbolic::parse_from_string($_)
          } @$operands;

        return bless {
            type     => $type,
            operands => $operands,
        } => $class;
    }

    my %args;
    %args = %{ $_[0] } if @_;
    # and ref( $_[0] ) eq 'HASH';
    # above condition isn't necessary since that'd otherwise have been
    # the above branch.

    my $operands = [];
    if ( ref $proto ) {
        foreach ( @{ $proto->{operands} } ) {
            push @$operands, $_->new();
        }
    }

    my $self = {
        type => undef,
        ( ref($proto) ? %$proto : () ),
        operands => $operands,
        %args,
    };

    @{ $self->{operands} } =
      map {
        ref($_) =~ /^Math::Symbolic/
          ? $_
          : Math::Symbolic::parse_from_string($_)
      } @{ $self->{operands} };

    bless $self => $class;
}

=head2 Method arity

Returns the operator's arity as an integer.

=cut

sub arity {
    my $self = shift;
    return $Op_Types[ $self->{type} ]{arity};
}

=head2 Method type

Optional integer argument that sets the operator's type.
Returns the operator's type as an integer.

=cut

sub type {
    my $self = shift;
    $self->{type} = shift if @_;
    return $self->{type};
}

=head2 Method to_string

Returns a string representation of the operator and its operands.
Optional argument: 'prefix' or 'infix'. Defaults to 'infix'.

=cut

sub to_string {
    my $self        = shift;
    my $string_type = shift;
    $string_type = 'infix'
      unless defined $string_type
      and $string_type eq 'prefix';
    no warnings 'recursion';

    my $string = '';
    if ( $string_type eq 'prefix' ) {
        $string .= $self->_to_string_prefix();
    }
    else {
        $string .= $self->_to_string_infix();
    }
    return $string;
}

sub _to_string_infix {
    my $self = shift;
    my $op   = $Op_Types[ $self->{type} ];

    my $op_str = $op->{infix_string};
    my $string;
    if ( $op->{arity} == 2 ) {
        my $op1 = $self->{operands}[0]->term_type() == T_OPERATOR;
        my $op2 = $self->{operands}[1]->term_type() == T_OPERATOR;

        if ( not defined $op_str ) {
            $op_str = $op->{prefix_string};
            $string = "$op_str(";
            $string .= join( ', ',
                map { $_->to_string('infix') } @{ $self->{operands} } );
            $string .= ')';
        }
        else {
            $string =
                ( $op1 ? '(' : '' )
              . $self->{operands}[0]->to_string('infix')
              . ( $op1 ? ')' : '' )
              . " $op_str "
              . ( $op2 ? '(' : '' )
              . $self->{operands}[1]->to_string('infix')
              . ( $op2 ? ')' : '' );
        }
    }
    elsif ( $op->{arity} == 1 ) {
        my $is_op1 = $self->{operands}[0]->term_type() == T_OPERATOR;
        if ( not defined $op_str ) {
            $op_str = $op->{prefix_string};
            $string =
              "$op_str(" . $self->{operands}[0]->to_string('infix') . ")";
        }
        else {
            $string = "$op_str"
              . ( $is_op1 ? '(' : '' )
              . $self->{operands}[0]->to_string('infix')
              . ( $is_op1 ? ')' : '' );
        }
    }
    else {
        $string = $self->_to_string_prefix();
    }
    return $string;
}

sub _to_string_prefix {
    my $self = shift;
    my $op   = $Op_Types[ $self->{type} ];

    my $op_str = $op->{prefix_string};
    my $string = "$op_str(";
    $string .=
      join( ', ', map { $_->to_string('prefix') } @{ $self->{operands} } );
    $string .= ')';
    return $string;
}

=head2 Method term_type

Returns the type of the term. ( T_OPERATOR )

=cut

sub term_type {T_OPERATOR}

=head2 Method simplify

Term simpilification.
First argument: Boolean indicating that the tree does not
need to be cloned, but can be restructured instead.
While this is faster, you might not be able to use the old
tree any more.

Example:

  my $othertree = $tree->simplify();
  # can use $othertree and $tree now.

  my $yetanothertree = $tree->simplify(1);
  # must not use $tree any more because its internal
  # representation might have been destroyed.

If you want to optimize a routine and you're sure that you
won't need the unsimplified tree any more, go ahead and use
the first parameter. In all other cases, you should go the
safe route.

=cut

sub simplify {
    my $self = shift;
    my $dont_clone = shift;
    $self = $self->new() unless $dont_clone;

    my $operands = $self->{operands};
    my $op       = $Op_Types[ $self->type() ];

    # simplify operands without cloning.
    @$operands = map { $_->simplify(1) } @$operands;

    if ( $self->arity() == 2 ) {
        my $o1   = $operands->[0];
        my $o2   = $operands->[1];
        my $tt1  = $o1->term_type();
        my $tt2  = $o2->term_type();
        my $type = $self->type();

        if ( $self->is_simple_constant() ) {
            return $self->apply();
        }

        if ( $o1->is_identical($o2) ) {
            if ( $type == B_PRODUCT ) {
                my $two = Math::Symbolic::Constant->new(2);
                return $self->new( '^', $o1, $two )->simplify(1);
            }
            elsif ( $type == B_SUM ) {
                my $two = Math::Symbolic::Constant->new(2);
                return $self->new( '*', $two, $o1 )->simplify(1);
            }
            elsif ( $type == B_DIVISION ) {
                croak "Symbolic division by zero."
                  if $o2->term_type() == T_CONSTANT
                  and ($o2->value() == 0
                    or $o2->special() eq 'zero' );
                return Math::Symbolic::Constant->one();
            }
            elsif ( $type == B_DIFFERENCE ) {
                return Math::Symbolic::Constant->zero();
            }
        }

        # exp(0) = 1
        if (    $tt2 == T_CONSTANT
            and $tt1 == T_OPERATOR
            and $type == B_EXP
            and $o2->value() == 0 )
        {
            return Math::Symbolic::Constant->one();
        }
        
        # a^1 = a
        if ( $tt2 == T_CONSTANT
            and $type == B_EXP
            and ( $o2->value() == 1 or $o2->special() eq 'one' ) )
        {
            return $o1;
        }

        # (a^b)^const = a^(const*b)
        if ( $tt2 == T_CONSTANT
            and $tt1 == T_OPERATOR
            and $type == B_EXP
            and $o1->type() == B_EXP )
        {
            return $self->new( '^', $o1->op1(),
                $self->new( '*', $o2, $o1->op2() ) )->simplify(1);
        }

# redundant
#        if ( $tt1 == T_VARIABLE
#            and $tt2 == T_VARIABLE
#            and $o1->name() eq $o2->name() )
#        {
#            if ( $type == B_SUM ) {
#                my $two = Math::Symbolic::Constant->new(2);
#                return $self->new( '*', $two, $o1 );
#            }
#            elsif ( $type == B_DIFFERENCE ) {
#                return Math::Symbolic::Constant->zero();
#            }
#            elsif ( $type == B_PRODUCT ) {
#                my $two = Math::Symbolic::Constant->new(2);
#                return $self->new( '^', $o1, $two );
#            }
#            elsif ( $type == B_DIVISION ) {
#                return Math::Symbolic::Constant->one();
#            }
#        }

        if ( $tt1 == T_CONSTANT or $tt2 == T_CONSTANT ) {
            my $const = ( $tt1 == T_CONSTANT ? $o1 : $o2 );
            my $not_c = ( $tt1 == T_CONSTANT ? $o2 : $o1 );
            my $constant_first = $tt1 == T_CONSTANT;

            if ( $type == B_SUM ) {
                return $not_c if $const->value() == 0;
                return $not_c->mod_add_constant($const);
            }
            
            if ( $type == B_DIFFERENCE ) {
                if (!$constant_first) {
                    my $value = $const->value();
                    return $not_c if $value == 0;
                    return $not_c->mod_add_constant(-$value);
                }
                if ( $constant_first and $const->value == 0 ) {
                    return Math::Symbolic::Operator->new(
                        {
                            type     => U_MINUS,
                            operands => [$not_c],
                        }
                    );
                }
            }
            
            if ( $type == B_PRODUCT ) {
                return $not_c if $const->value() == 1;
                return Math::Symbolic::Constant->zero()
                  if $const->value == 0;

                if (    $not_c->term_type() == T_OPERATOR
                    and $not_c->type() == B_PRODUCT
                    and $not_c->op1()->term_type() == T_CONSTANT
                    || $not_c->op2()->term_type() == T_CONSTANT )
                {
                    my ( $c, $nc ) = (
                        $not_c->op1()->term_type() == T_CONSTANT
                        ? ( $not_c->op1, $not_c->op2 )
                        : ( $not_c->op2, $not_c->op1 )
                    );
                    my $c_product = $not_c->new( '*', $const, $c )->apply();
                    return $not_c->new( '*', $c_product, $nc );
                }
                elsif ( $not_c->term_type() == T_OPERATOR
                    and $not_c->type() == B_DIVISION
                    and $not_c->op1()->term_type() == T_CONSTANT )
                {
                    return Math::Symbolic::Operator->new(
                        '/',
                        Math::Symbolic::Constant->new(
                            $const->value() * $not_c->op1()->value()
                        ),
                        $not_c->op2()
                    );
                }
            }
            elsif ( $type == B_DIVISION ) {
                return $not_c
                  if !$constant_first
                  and $const->value == 1;
                return Math::Symbolic::Constant->new('#Inf')
                  if !$constant_first
                  and $const->value == 0;
                return Math::Symbolic::Constant->zero()
                  if $const->value == 0;

            }
        }
        elsif ( $type == B_PRODUCT ) {
            if ( $tt2 == T_CONSTANT ) {
                return $o1->mod_multiply_constant($o2);
            }
            elsif ( $tt1 == T_CONSTANT ) {
                return $o2->mod_multiply_constant($o1);
            }
            elsif ( $tt1 == T_OPERATOR and $tt2 == T_VARIABLE ) {
                return $self->new( '*', $o2, $o1 );
            }
        }

        if ( $type == B_SUM ) {
            my @ops;
            my @const;
            my @todo = ( $o1, $o2 );
            my %vars;
            while (@todo) {
                my $this = shift @todo;

                if ( $this->term_type() == T_OPERATOR ) {
                    my $t = $this->type();
                    if ( $t == B_SUM ) {
                        push @todo, @{ $this->{operands} };
                    }
                    elsif ( $t == B_DIFFERENCE ) {
                        push @todo, $this->op1(),
                          Math::Symbolic::Operator->new( 'neg',
                            $this->op2() );
                    }
                    elsif ( $t == U_MINUS ) {
                        my $op = $this->op1();
                        my $tt = $op->term_type();
                        if ( $tt == T_VARIABLE ) {
                            $vars{$op->name}--;
                        }
                        elsif ( $tt == T_CONSTANT ) {
                            push @const, $todo[0]->value();
                        }
                        else {
                            my $ti = $op->type();
                            if ( $ti == U_MINUS ) {
                                push @todo, $op->op1();
                            }
                            elsif ( $ti == B_SUM ) {
                                push @todo,
                                  Math::Symbolic::Operator->new(
                                    'neg', $op->op1()
                                  ),
                                  Math::Symbolic::Operator->new( 'neg',
                                    $op->op2() );
                            }
                            elsif ( $ti == B_DIFFERENCE ) {
                                push @todo, $op->op2(),
                                  Math::Symbolic::Operator->new( 'neg',
                                    $op->op1() );
                            }
                            else {
                                push @ops, $this;
                            }
                        }
                    }
                    elsif ( $t == B_PRODUCT ) {
                        my ($o1, $o2) = @{$this->{operands}};
                        my $tl = $o1->term_type();
                        my $tr = $o2->term_type();
                        
                        if ($tl == T_VARIABLE and $tr == T_CONSTANT) {
                            $vars{$o1->name}+= $o2->value();
                        }
                        elsif ($tr == T_VARIABLE and $tl == T_CONSTANT) {
                            $vars{$o2->name}+= $o1->value();
                        }
                        else {
                            push @ops, $this;
                        }
                    }
                    else {
                        push @ops, $this;
                    }
                }
                elsif ( $this->term_type() == T_VARIABLE ) {
                    $vars{$this->name}++;
                }
                else {
                    push @const, $this->value();
                }
            }

            my @vars = ();
            foreach (keys %vars) {
                my $num  = $vars{$_};
                if (!$num) { next; }
                
                if ($num == 1) {
                    push @vars, Math::Symbolic::Variable->new($_);
                    next;
                }
                my $mul = Math::Symbolic::Operator->new(
                    '*',
                    Math::Symbolic::Constant->new(abs($num)),
                    Math::Symbolic::Variable->new($_)
                );
                push @ops, $num < 0
                    ? Math::Symbolic::Operator->new('neg', $mul)
                    : $mul;                
            }
            
            my $const;
            $const = Math::Symbolic::Constant->new($const) if defined $const and $const != 0;

            $const = shift @vars if not defined $const;
            foreach ( @vars ) {
                $const = Math::Symbolic::Operator->new('+', $const, $_);
            }
            
            @ops = map {$_->simplify(1)} @ops;
            my @newops;
            push @newops, $const if defined $const;
            foreach my $out ( 0 .. $#ops ) {
                next if not defined $ops[$out];
                my $identical = 0;
                foreach my $in ( 0 .. $#ops ) {
                    next if $in == $out or not defined $ops[$in];
                    if ( $ops[$out]->is_identical( $ops[$in] ) ) {
                        $identical++;
                        $ops[$in] = undef;
                    }
                }
                if ( not $identical ) {
                    push @newops, $ops[$out];
                }
                else {
                    push @newops,
                      Math::Symbolic::Operator->new( '*', $identical + 1,
                        $ops[$out] );
                }
            }
            
            my $sumops;
            if (@newops) {
                $sumops = shift @newops;
                $sumops += $_ foreach @newops;
            }
            else {return Math::Symbolic::Constant->zero()}

            return $sumops;
        }
    }
    elsif ( $self->arity() == 1 ) {
        my $o    = $operands->[0];
        my $tt   = $o->term_type();
        my $type = $self->type();
        if ( $type == U_MINUS ) {
            if ( $tt == T_CONSTANT ) {
                return Math::Symbolic::Constant->new( -$o->value(), );
            }
            elsif ( $tt == T_OPERATOR ) {
                my $inner_type = $o->type();
                if ( $inner_type == U_MINUS ) {
                    return $o->{operands}[0];
                }
                elsif ( $inner_type == B_DIFFERENCE ) {
                    return $o->new( '-', @{$o->{operands}}[1,0] );
                }
            }
        }
    }

    return $self;
}

=head2 Methods op1 and op2

Returns first/second operand of the operator if it exists or undef.

=cut

sub op1 {
    return $_[0]{operands}[0] if @{ $_[0]{operands} } >= 1;
    return undef;
}

sub op2 {
    return $_[0]{operands}[1] if @{ $_[0]{operands} } >= 2;
}

=head2 Method apply

Applies the operation to its operands' value() and returns the result
as a constant (-object).

Without arguments, all variables in the tree are required to have a value.
If any don't, the call to apply() returns undef.

To (temorarily, for this single method call) assign values to
variables in the tree, you may provide key/value pairs of variable names
and values. Instead of passing a list of key/value pairs, you may also pass
a single hash reference containing the variable mappings.

You usually want to call the value() instead of this.

=cut

sub apply {
    my $self        = shift;
    my $args        = ( @_ == 1 ? $_[0] : +{ @_ } );
    my $op_type     = $self->type();
    my $op          = $Op_Types[$op_type];
    my $operands    = $self->{operands};
    my $application = $op->{application};

    if ( ref($application) ne 'CODE' ) {
        local @_;
        local $@;
        eval {
            @_ = map {
                my $v = $_->value($args);
                (
                    defined $v
                    ? $v
                    : croak 
                      "Undefined operand in Math::Symbolic::Operator->apply()"
                  )
            } @$operands;
        };
        return undef if $@;
        return undef if $op_type == B_DIVISION and $_[1] == 0;
        my $result = eval $application;
        die "Invalid operator application: $@" if $@;
        die "Undefined result from operator application."
          if not defined $result;

        return Math::Symbolic::Constant->new($result);
    }
    else {
        return $application->(@$operands);
    }
}

=head2 Method value

value() evaluates the Math::Symbolic tree to its numeric representation.

value() without arguments requires that every variable in the tree contains
a defined value attribute. Please note that this refers to every variable
I<object>, not just every named variable.

value() with one argument sets the object's value if you're dealing with
Variables or Constants. In case of operators, a call with one argument will
assume that the argument is a hash reference. (see next paragraph)

value() with named arguments (key/value pairs) associates variables in the tree
with the value-arguments if the corresponging key matches the variable name.
(Can one say this any more complicated?) Since version 0.132, an
equivalent and valid syntax is to pass a single hash reference instead of a
list.

Example: $tree->value(x => 1, y => 2, z => 3, t => 0) assigns the value 1 to
any occurrances of variables of the name "x", aso.

If a variable in the tree has no value set (and no argument of value sets
it temporarily), the call to value() returns undef.

=cut

sub value {
    my $self = shift;
    my $args = ( @_ == 1 ? $_[0] : +{@_} );

    my $applied = $self->apply($args);
    return undef unless defined $applied;
    return $applied->value($args);
}

=head2 Method signature

signature() returns a tree's signature.

In the context of Math::Symbolic, signatures are the list of variables
any given tree depends on. That means the tree "v*t+x" depends on the
variables v, t, and x. Thus, applying signature() on the tree that would
be parsed from above example yields the sorted list ('t', 'v', 'x').

Constants do not depend on any variables and therefore return the empty list.
Obviously, operators' dependencies vary.

Math::Symbolic::Variable objects, however, may have a slightly more
involved signature. By convention, Math::Symbolic variables depend on
themselves. That means their signature contains their own name. But they
can also depend on various other variables because variables themselves
can be viewed as placeholders for more compicated terms. For example
in mechanics, the acceleration of a particle depends on its mass and
the sum of all forces acting on it. So the variable 'acceleration' would
have the signature ('acceleration', 'force1', 'force2',..., 'mass', 'time').

If you're just looking for a list of the names of all variables in the tree,
you should use the explicit_signature() method instead.

=cut

sub signature {
    my $self = shift;
    my %sig;
    foreach my $o ( $self->descending_operands('all_vars') ) {
        $sig{$_} = undef for $o->signature();
    }
    return sort keys %sig;
}

=head2 Method explicit_signature

explicit_signature() returns a lexicographically sorted list of
variable names in the tree.

See also: signature().

=cut

sub explicit_signature {
    my $self = shift;
    my %sig;
    foreach my $o ( $self->descending_operands('all_vars') ) {
        $sig{$_} = undef for $o->explicit_signature();
    }
    return sort keys %sig;
}

1;
__END__

=head1 AUTHOR

Please send feedback, bug reports, and support requests to the Math::Symbolic
support mailing list:
math-symbolic-support at lists dot sourceforge dot net. Please
consider letting us know how you use Math::Symbolic. Thank you.

If you're interested in helping with the development or extending the
module's functionality, please contact the developers' mailing list:
math-symbolic-develop at lists dot sourceforge dot net.

List of contributors:

  Steffen Müller, symbolic-module at steffen-mueller dot net
  Stray Toaster, mwk at users dot sourceforge dot net
  Oliver Ebenhöh

=head1 SEE ALSO

New versions of this module can be found on
http://steffen-mueller.net or CPAN. The module development takes place on
Sourceforge at http://sourceforge.net/projects/math-symbolic/

L<Math::Symbolic>

=cut