/usr/share/perl5/PPI/Node.pm is in libppi-perl 1.218-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 | package PPI::Node;
=pod
=head1 NAME
PPI::Node - Abstract PPI Node class, an Element that can contain other Elements
=head1 INHERITANCE
PPI::Node
isa PPI::Element
=head1 SYNOPSIS
# Create a typical node (a Document in this case)
my $Node = PPI::Document->new;
# Add an element to the node( in this case, a token )
my $Token = PPI::Token::Word->new('my');
$Node->add_element( $Token );
# Get the elements for the Node
my @elements = $Node->children;
# Find all the barewords within a Node
my $barewords = $Node->find( 'PPI::Token::Word' );
# Find by more complex criteria
my $my_tokens = $Node->find( sub { $_[1]->content eq 'my' } );
# Remove all the whitespace
$Node->prune( 'PPI::Token::Whitespace' );
# Remove by more complex criteria
$Node->prune( sub { $_[1]->content eq 'my' } );
=head1 DESCRIPTION
The C<PPI::Node> class provides an abstract base class for the Element
classes that are able to contain other elements L<PPI::Document>,
L<PPI::Statement>, and L<PPI::Structure>.
As well as those listed below, all of the methods that apply to
L<PPI::Element> objects also apply to C<PPI::Node> objects.
=head1 METHODS
=cut
use strict;
use Carp ();
use Scalar::Util qw{refaddr};
use List::MoreUtils ();
use Params::Util qw{_INSTANCE _CLASS _CODELIKE};
use PPI::Element ();
use vars qw{$VERSION @ISA *_PARENT};
BEGIN {
$VERSION = '1.218';
@ISA = 'PPI::Element';
*_PARENT = *PPI::Element::_PARENT;
}
#####################################################################
# The basic constructor
sub new {
my $class = ref $_[0] || $_[0];
bless { children => [] }, $class;
}
#####################################################################
# PDOM Methods
=pod
=head2 scope
The C<scope> method returns true if the node represents a lexical scope
boundary, or false if it does not.
=cut
### XS -> PPI/XS.xs:_PPI_Node__scope 0.903+
sub scope() { '' }
=pod
=head2 add_element $Element
The C<add_element> method adds a L<PPI::Element> object to the end of a
C<PPI::Node>. Because Elements maintain links to their parent, an
Element can only be added to a single Node.
Returns true if the L<PPI::Element> was added. Returns C<undef> if the
Element was already within another Node, or the method is not passed
a L<PPI::Element> object.
=cut
sub add_element {
my $self = shift;
# Check the element
my $Element = _INSTANCE(shift, 'PPI::Element') or return undef;
$_PARENT{refaddr $Element} and return undef;
# Add the argument to the elements
push @{$self->{children}}, $Element;
Scalar::Util::weaken(
$_PARENT{refaddr $Element} = $self
);
1;
}
# In a typical run profile, add_element is the number 1 resource drain.
# This is a highly optimised unsafe version, for internal use only.
sub __add_element {
Scalar::Util::weaken(
$_PARENT{refaddr $_[1]} = $_[0]
);
push @{$_[0]->{children}}, $_[1];
}
=pod
=head2 elements
The C<elements> method accesses all child elements B<structurally> within
the C<PPI::Node> object. Note that in the base of the L<PPI::Structure>
classes, this C<DOES> include the brace tokens at either end of the
structure.
Returns a list of zero or more L<PPI::Element> objects.
Alternatively, if called in the scalar context, the C<elements> method
returns a count of the number of elements.
=cut
sub elements {
if ( wantarray ) {
return @{$_[0]->{children}};
} else {
return scalar @{$_[0]->{children}};
}
}
=pod
=head2 first_element
The C<first_element> method accesses the first element structurally within
the C<PPI::Node> object. As for the C<elements> method, this does include
the brace tokens for L<PPI::Structure> objects.
Returns a L<PPI::Element> object, or C<undef> if for some reason the
C<PPI::Node> object does not contain any elements.
=cut
# Normally the first element is also the first child
sub first_element {
$_[0]->{children}->[0];
}
=pod
=head2 last_element
The C<last_element> method accesses the last element structurally within
the C<PPI::Node> object. As for the C<elements> method, this does include
the brace tokens for L<PPI::Structure> objects.
Returns a L<PPI::Element> object, or C<undef> if for some reason the
C<PPI::Node> object does not contain any elements.
=cut
# Normally the last element is also the last child
sub last_element {
$_[0]->{children}->[-1];
}
=pod
=head2 children
The C<children> method accesses all child elements lexically within the
C<PPI::Node> object. Note that in the case of the L<PPI::Structure>
classes, this does B<NOT> include the brace tokens at either end of the
structure.
Returns a list of zero of more L<PPI::Element> objects.
Alternatively, if called in the scalar context, the C<children> method
returns a count of the number of lexical children.
=cut
# In the default case, this is the same as for the elements method
sub children {
wantarray ? @{$_[0]->{children}} : scalar @{$_[0]->{children}};
}
=pod
=head2 schildren
The C<schildren> method is really just a convenience, the significant-only
variation of the normal C<children> method.
In list context, returns a list of significant children. In scalar context,
returns the number of significant children.
=cut
sub schildren {
return grep { $_->significant } @{$_[0]->{children}} if wantarray;
my $count = 0;
foreach ( @{$_[0]->{children}} ) {
$count++ if $_->significant;
}
return $count;
}
=pod
=head2 child $index
The C<child> method accesses a child L<PPI::Element> object by its
position within the Node.
Returns a L<PPI::Element> object, or C<undef> if there is no child
element at that node.
=cut
sub child {
$_[0]->{children}->[$_[1]];
}
=pod
=head2 schild $index
The lexical structure of the Perl language ignores 'insignificant' items,
such as whitespace and comments, while L<PPI> treats these items as valid
tokens so that it can reassemble the file at any time. Because of this,
in many situations there is a need to find an Element within a Node by
index, only counting lexically significant Elements.
The C<schild> method returns a child Element by index, ignoring
insignificant Elements. The index of a child Element is specified in the
same way as for a normal array, with the first Element at index 0, and
negative indexes used to identify a "from the end" position.
=cut
sub schild {
my $self = shift;
my $idx = 0 + shift;
my $el = $self->{children};
if ( $idx < 0 ) {
my $cursor = 0;
while ( exists $el->[--$cursor] ) {
return $el->[$cursor] if $el->[$cursor]->significant and ++$idx >= 0;
}
} else {
my $cursor = -1;
while ( exists $el->[++$cursor] ) {
return $el->[$cursor] if $el->[$cursor]->significant and --$idx < 0;
}
}
undef;
}
=pod
=head2 contains $Element
The C<contains> method is used to determine if another L<PPI::Element>
object is logically "within" a C<PPI::Node>. For the special case of the
brace tokens at either side of a L<PPI::Structure> object, they are
generally considered "within" a L<PPI::Structure> object, even if they are
not actually in the elements for the L<PPI::Structure>.
Returns true if the L<PPI::Element> is within us, false if not, or C<undef>
on error.
=cut
sub contains {
my $self = shift;
my $Element = _INSTANCE(shift, 'PPI::Element') or return undef;
# Iterate up the Element's parent chain until we either run out
# of parents, or get to ourself.
while ( $Element = $Element->parent ) {
return 1 if refaddr($self) == refaddr($Element);
}
'';
}
=pod
=head2 find $class | \&wanted
The C<find> method is used to search within a code tree for
L<PPI::Element> objects that meet a particular condition.
To specify the condition, the method can be provided with either a simple
class name (full or shortened), or a C<CODE>/function reference.
# Find all single quotes in a Document (which is a Node)
$Document->find('PPI::Quote::Single');
# The same thing with a shortened class name
$Document->find('Quote::Single');
# Anything more elaborate, we go with the sub
$Document->find( sub {
# At the top level of the file...
$_[1]->parent == $_[0]
and (
# ...find all comments and POD
$_[1]->isa('PPI::Token::Pod')
or
$_[1]->isa('PPI::Token::Comment')
)
} );
The function will be passed two arguments, the top-level C<PPI::Node>
you are searching in and the current L<PPI::Element> that the condition
is testing.
The anonymous function should return one of three values. Returning true
indicates a condition match, defined-false (C<0> or C<''>) indicates
no-match, and C<undef> indicates no-match and no-descend.
In the last case, the tree walker will skip over anything below the
C<undef>-returning element and move on to the next element at the same
level.
To halt the entire search and return C<undef> immediately, a condition
function should throw an exception (i.e. C<die>).
Note that this same wanted logic is used for all methods documented to
have a C<\&wanted> parameter, as this one does.
The C<find> method returns a reference to an array of L<PPI::Element>
objects that match the condition, false (but defined) if no Elements match
the condition, or C<undef> if you provide a bad condition, or an error
occurs during the search process.
In the case of a bad condition, a warning will be emitted as well.
=cut
sub find {
my $self = shift;
my $wanted = $self->_wanted(shift) or return undef;
# Use a queue based search, rather than a recursive one
my @found = ();
my @queue = @{$self->{children}};
eval {
while ( @queue ) {
my $Element = shift @queue;
my $rv = &$wanted( $self, $Element );
push @found, $Element if $rv;
# Support "don't descend on undef return"
next unless defined $rv;
# Skip if the Element doesn't have any children
next unless $Element->isa('PPI::Node');
# Depth-first keeps the queue size down and provides a
# better logical order.
if ( $Element->isa('PPI::Structure') ) {
unshift @queue, $Element->finish if $Element->finish;
unshift @queue, @{$Element->{children}};
unshift @queue, $Element->start if $Element->start;
} else {
unshift @queue, @{$Element->{children}};
}
}
};
if ( $@ ) {
# Caught exception thrown from the wanted function
return undef;
}
@found ? \@found : '';
}
=pod
=head2 find_first $class | \&wanted
If the normal C<find> method is like a grep, then C<find_first> is
equivalent to the L<List::Util> C<first> function.
Given an element class or a wanted function, it will search depth-first
through a tree until it finds something that matches the condition,
returning the first Element that it encounters.
See the C<find> method for details on the format of the search condition.
Returns the first L<PPI::Element> object that matches the condition, false
if nothing matches the condition, or C<undef> if given an invalid condition,
or an error occurs.
=cut
sub find_first {
my $self = shift;
my $wanted = $self->_wanted(shift) or return undef;
# Use the same queue-based search as for ->find
my @queue = @{$self->{children}};
my $rv = eval {
# The defined() here prevents a ton of calls to PPI::Util::TRUE
while ( @queue ) {
my $Element = shift @queue;
my $rv = &$wanted( $self, $Element );
return $Element if $rv;
# Support "don't descend on undef return"
next unless defined $rv;
# Skip if the Element doesn't have any children
next unless $Element->isa('PPI::Node');
# Depth-first keeps the queue size down and provides a
# better logical order.
if ( $Element->isa('PPI::Structure') ) {
unshift @queue, $Element->finish if defined($Element->finish);
unshift @queue, @{$Element->{children}};
unshift @queue, $Element->start if defined($Element->start);
} else {
unshift @queue, @{$Element->{children}};
}
}
};
if ( $@ ) {
# Caught exception thrown from the wanted function
return undef;
}
$rv or '';
}
=pod
=head2 find_any $class | \&wanted
The C<find_any> method is a short-circuiting true/false method that behaves
like the normal C<find> method, but returns true as soon as it finds any
Elements that match the search condition.
See the C<find> method for details on the format of the search condition.
Returns true if any Elements that match the condition can be found, false if
not, or C<undef> if given an invalid condition, or an error occurs.
=cut
sub find_any {
my $self = shift;
my $rv = $self->find_first(@_);
$rv ? 1 : $rv; # false or undef
}
=pod
=head2 remove_child $Element
If passed a L<PPI::Element> object that is a direct child of the Node,
the C<remove_element> method will remove the C<Element> intact, along
with any of its children. As such, this method acts essentially as a
'cut' function.
If successful, returns the removed element. Otherwise, returns C<undef>.
=cut
sub remove_child {
my $self = shift;
my $child = _INSTANCE(shift, 'PPI::Element') or return undef;
# Find the position of the child
my $key = refaddr $child;
my $p = List::MoreUtils::firstidx {
refaddr $_ == $key
} @{$self->{children}};
return undef unless defined $p;
# Splice it out, and remove the child's parent entry
splice( @{$self->{children}}, $p, 1 );
delete $_PARENT{refaddr $child};
$child;
}
=pod
=head2 prune $class | \&wanted
The C<prune> method is used to strip L<PPI::Element> objects out of a code
tree. The argument is the same as for the C<find> method, either a class
name, or an anonymous subroutine which returns true/false. Any Element
that matches the class|wanted will be deleted from the code tree, along
with any of its children.
The C<prune> method returns the number of C<Element> objects that matched
and were removed, B<non-recursively>. This might also be zero, so avoid a
simple true/false test on the return false of the C<prune> method. It
returns C<undef> on error, which you probably B<should> test for.
=cut
sub prune {
my $self = shift;
my $wanted = $self->_wanted(shift) or return undef;
# Use a depth-first queue search
my $pruned = 0;
my @queue = $self->children;
eval {
while ( my $element = shift @queue ) {
my $rv = &$wanted( $self, $element );
if ( $rv ) {
# Delete the child
$element->delete or return undef;
$pruned++;
next;
}
# Support the undef == "don't descend"
next unless defined $rv;
if ( _INSTANCE($element, 'PPI::Node') ) {
# Depth-first keeps the queue size down
unshift @queue, $element->children;
}
}
};
if ( $@ ) {
# Caught exception thrown from the wanted function
return undef;
}
$pruned;
}
# This method is likely to be very heavily used, so take
# it slowly and carefully.
### NOTE: Renaming this function or changing either to self will probably
### break File::Find::Rule::PPI
sub _wanted {
my $either = shift;
my $it = defined($_[0]) ? shift : do {
Carp::carp('Undefined value passed as search condition') if $^W;
return undef;
};
# Has the caller provided a wanted function directly
return $it if _CODELIKE($it);
if ( ref $it ) {
# No other ref types are supported
Carp::carp('Illegal non-CODE reference passed as search condition') if $^W;
return undef;
}
# The first argument should be an Element class, possibly in shorthand
$it = "PPI::$it" unless substr($it, 0, 5) eq 'PPI::';
unless ( _CLASS($it) and $it->isa('PPI::Element') ) {
# We got something, but it isn't an element
Carp::carp("Cannot create search condition for '$it': Not a PPI::Element") if $^W;
return undef;
}
# Create the class part of the wanted function
my $wanted_class = "\n\treturn '' unless \$_[1]->isa('$it');";
# Have we been given a second argument to check the content
my $wanted_content = '';
if ( defined $_[0] ) {
my $content = shift;
if ( ref $content eq 'Regexp' ) {
$content = "$content";
} elsif ( ref $content ) {
# No other ref types are supported
Carp::carp("Cannot create search condition for '$it': Not a PPI::Element") if $^W;
return undef;
} else {
$content = quotemeta $content;
}
# Complete the content part of the wanted function
$wanted_content .= "\n\treturn '' unless defined \$_[1]->{content};";
$wanted_content .= "\n\treturn '' unless \$_[1]->{content} =~ /$content/;";
}
# Create the complete wanted function
my $code = "sub {"
. $wanted_class
. $wanted_content
. "\n\t1;"
. "\n}";
# Compile the wanted function
$code = eval $code;
(ref $code eq 'CODE') ? $code : undef;
}
####################################################################
# PPI::Element overloaded methods
sub tokens {
map { $_->tokens } @{$_[0]->{children}};
}
### XS -> PPI/XS.xs:_PPI_Element__content 0.900+
sub content {
join '', map { $_->content } @{$_[0]->{children}};
}
# Clone as normal, but then go down and relink all the _PARENT entries
sub clone {
my $self = shift;
my $clone = $self->SUPER::clone;
$clone->__link_children;
$clone;
}
sub location {
my $self = shift;
my $first = $self->{children}->[0] or return undef;
$first->location;
}
#####################################################################
# Internal Methods
sub DESTROY {
local $_;
if ( $_[0]->{children} ) {
my @queue = $_[0];
while ( defined($_ = shift @queue) ) {
unshift @queue, @{delete $_->{children}} if $_->{children};
# Remove all internal/private weird crosslinking so that
# the cascading DESTROY calls will get called properly.
%$_ = ();
}
}
# Remove us from our parent node as normal
delete $_PARENT{refaddr $_[0]};
}
# Find the position of a child
sub __position {
my $key = refaddr $_[1];
List::MoreUtils::firstidx { refaddr $_ == $key } @{$_[0]->{children}};
}
# Insert one or more elements before a child
sub __insert_before_child {
my $self = shift;
my $key = refaddr shift;
my $p = List::MoreUtils::firstidx {
refaddr $_ == $key
} @{$self->{children}};
foreach ( @_ ) {
Scalar::Util::weaken(
$_PARENT{refaddr $_} = $self
);
}
splice( @{$self->{children}}, $p, 0, @_ );
1;
}
# Insert one or more elements after a child
sub __insert_after_child {
my $self = shift;
my $key = refaddr shift;
my $p = List::MoreUtils::firstidx {
refaddr $_ == $key
} @{$self->{children}};
foreach ( @_ ) {
Scalar::Util::weaken(
$_PARENT{refaddr $_} = $self
);
}
splice( @{$self->{children}}, $p + 1, 0, @_ );
1;
}
# Replace a child
sub __replace_child {
my $self = shift;
my $key = refaddr shift;
my $p = List::MoreUtils::firstidx {
refaddr $_ == $key
} @{$self->{children}};
foreach ( @_ ) {
Scalar::Util::weaken(
$_PARENT{refaddr $_} = $self
);
}
splice( @{$self->{children}}, $p, 1, @_ );
1;
}
# Create PARENT links for an entire tree.
# Used when cloning or thawing.
sub __link_children {
my $self = shift;
# Relink all our children ( depth first )
my @queue = ( $self );
while ( my $Node = shift @queue ) {
# Link our immediate children
foreach my $Element ( @{$Node->{children}} ) {
Scalar::Util::weaken(
$_PARENT{refaddr($Element)} = $Node
);
unshift @queue, $Element if $Element->isa('PPI::Node');
}
# If it's a structure, relink the open/close braces
next unless $Node->isa('PPI::Structure');
Scalar::Util::weaken(
$_PARENT{refaddr($Node->start)} = $Node
) if $Node->start;
Scalar::Util::weaken(
$_PARENT{refaddr($Node->finish)} = $Node
) if $Node->finish;
}
1;
}
1;
=pod
=head1 TO DO
- Move as much as possible to L<PPI::XS>
=head1 SUPPORT
See the L<support section|PPI/SUPPORT> in the main module.
=head1 AUTHOR
Adam Kennedy E<lt>adamk@cpan.orgE<gt>
=head1 COPYRIGHT
Copyright 2001 - 2011 Adam Kennedy.
This program is free software; you can redistribute
it and/or modify it under the same terms as Perl itself.
The full text of the license can be found in the
LICENSE file included with this module.
=cut
|