This file is indexed.

/usr/lib/python3.4/test/test_statistics.py is in libpython3.4-testsuite 3.4.2-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
"""Test suite for statistics module, including helper NumericTestCase and
approx_equal function.

"""

import collections
import decimal
import doctest
import math
import random
import sys
import types
import unittest

from decimal import Decimal
from fractions import Fraction


# Module to be tested.
import statistics


# === Helper functions and class ===

def _calc_errors(actual, expected):
    """Return the absolute and relative errors between two numbers.

    >>> _calc_errors(100, 75)
    (25, 0.25)
    >>> _calc_errors(100, 100)
    (0, 0.0)

    Returns the (absolute error, relative error) between the two arguments.
    """
    base = max(abs(actual), abs(expected))
    abs_err = abs(actual - expected)
    rel_err = abs_err/base if base else float('inf')
    return (abs_err, rel_err)


def approx_equal(x, y, tol=1e-12, rel=1e-7):
    """approx_equal(x, y [, tol [, rel]]) => True|False

    Return True if numbers x and y are approximately equal, to within some
    margin of error, otherwise return False. Numbers which compare equal
    will also compare approximately equal.

    x is approximately equal to y if the difference between them is less than
    an absolute error tol or a relative error rel, whichever is bigger.

    If given, both tol and rel must be finite, non-negative numbers. If not
    given, default values are tol=1e-12 and rel=1e-7.

    >>> approx_equal(1.2589, 1.2587, tol=0.0003, rel=0)
    True
    >>> approx_equal(1.2589, 1.2587, tol=0.0001, rel=0)
    False

    Absolute error is defined as abs(x-y); if that is less than or equal to
    tol, x and y are considered approximately equal.

    Relative error is defined as abs((x-y)/x) or abs((x-y)/y), whichever is
    smaller, provided x or y are not zero. If that figure is less than or
    equal to rel, x and y are considered approximately equal.

    Complex numbers are not directly supported. If you wish to compare to
    complex numbers, extract their real and imaginary parts and compare them
    individually.

    NANs always compare unequal, even with themselves. Infinities compare
    approximately equal if they have the same sign (both positive or both
    negative). Infinities with different signs compare unequal; so do
    comparisons of infinities with finite numbers.
    """
    if tol < 0 or rel < 0:
        raise ValueError('error tolerances must be non-negative')
    # NANs are never equal to anything, approximately or otherwise.
    if math.isnan(x) or math.isnan(y):
        return False
    # Numbers which compare equal also compare approximately equal.
    if x == y:
        # This includes the case of two infinities with the same sign.
        return True
    if math.isinf(x) or math.isinf(y):
        # This includes the case of two infinities of opposite sign, or
        # one infinity and one finite number.
        return False
    # Two finite numbers.
    actual_error = abs(x - y)
    allowed_error = max(tol, rel*max(abs(x), abs(y)))
    return actual_error <= allowed_error


# This class exists only as somewhere to stick a docstring containing
# doctests. The following docstring and tests were originally in a separate
# module. Now that it has been merged in here, I need somewhere to hang the.
# docstring. Ultimately, this class will die, and the information below will
# either become redundant, or be moved into more appropriate places.
class _DoNothing:
    """
    When doing numeric work, especially with floats, exact equality is often
    not what you want. Due to round-off error, it is often a bad idea to try
    to compare floats with equality. Instead the usual procedure is to test
    them with some (hopefully small!) allowance for error.

    The ``approx_equal`` function allows you to specify either an absolute
    error tolerance, or a relative error, or both.

    Absolute error tolerances are simple, but you need to know the magnitude
    of the quantities being compared:

    >>> approx_equal(12.345, 12.346, tol=1e-3)
    True
    >>> approx_equal(12.345e6, 12.346e6, tol=1e-3)  # tol is too small.
    False

    Relative errors are more suitable when the values you are comparing can
    vary in magnitude:

    >>> approx_equal(12.345, 12.346, rel=1e-4)
    True
    >>> approx_equal(12.345e6, 12.346e6, rel=1e-4)
    True

    but a naive implementation of relative error testing can run into trouble
    around zero.

    If you supply both an absolute tolerance and a relative error, the
    comparison succeeds if either individual test succeeds:

    >>> approx_equal(12.345e6, 12.346e6, tol=1e-3, rel=1e-4)
    True

    """
    pass



# We prefer this for testing numeric values that may not be exactly equal,
# and avoid using TestCase.assertAlmostEqual, because it sucks :-)

class NumericTestCase(unittest.TestCase):
    """Unit test class for numeric work.

    This subclasses TestCase. In addition to the standard method
    ``TestCase.assertAlmostEqual``,  ``assertApproxEqual`` is provided.
    """
    # By default, we expect exact equality, unless overridden.
    tol = rel = 0

    def assertApproxEqual(
            self, first, second, tol=None, rel=None, msg=None
            ):
        """Test passes if ``first`` and ``second`` are approximately equal.

        This test passes if ``first`` and ``second`` are equal to
        within ``tol``, an absolute error, or ``rel``, a relative error.

        If either ``tol`` or ``rel`` are None or not given, they default to
        test attributes of the same name (by default, 0).

        The objects may be either numbers, or sequences of numbers. Sequences
        are tested element-by-element.

        >>> class MyTest(NumericTestCase):
        ...     def test_number(self):
        ...         x = 1.0/6
        ...         y = sum([x]*6)
        ...         self.assertApproxEqual(y, 1.0, tol=1e-15)
        ...     def test_sequence(self):
        ...         a = [1.001, 1.001e-10, 1.001e10]
        ...         b = [1.0, 1e-10, 1e10]
        ...         self.assertApproxEqual(a, b, rel=1e-3)
        ...
        >>> import unittest
        >>> from io import StringIO  # Suppress test runner output.
        >>> suite = unittest.TestLoader().loadTestsFromTestCase(MyTest)
        >>> unittest.TextTestRunner(stream=StringIO()).run(suite)
        <unittest.runner.TextTestResult run=2 errors=0 failures=0>

        """
        if tol is None:
            tol = self.tol
        if rel is None:
            rel = self.rel
        if (
                isinstance(first, collections.Sequence) and
                isinstance(second, collections.Sequence)
            ):
            check = self._check_approx_seq
        else:
            check = self._check_approx_num
        check(first, second, tol, rel, msg)

    def _check_approx_seq(self, first, second, tol, rel, msg):
        if len(first) != len(second):
            standardMsg = (
                "sequences differ in length: %d items != %d items"
                % (len(first), len(second))
                )
            msg = self._formatMessage(msg, standardMsg)
            raise self.failureException(msg)
        for i, (a,e) in enumerate(zip(first, second)):
            self._check_approx_num(a, e, tol, rel, msg, i)

    def _check_approx_num(self, first, second, tol, rel, msg, idx=None):
        if approx_equal(first, second, tol, rel):
            # Test passes. Return early, we are done.
            return None
        # Otherwise we failed.
        standardMsg = self._make_std_err_msg(first, second, tol, rel, idx)
        msg = self._formatMessage(msg, standardMsg)
        raise self.failureException(msg)

    @staticmethod
    def _make_std_err_msg(first, second, tol, rel, idx):
        # Create the standard error message for approx_equal failures.
        assert first != second
        template = (
            '  %r != %r\n'
            '  values differ by more than tol=%r and rel=%r\n'
            '  -> absolute error = %r\n'
            '  -> relative error = %r'
            )
        if idx is not None:
            header = 'numeric sequences first differ at index %d.\n' % idx
            template = header + template
        # Calculate actual errors:
        abs_err, rel_err = _calc_errors(first, second)
        return template % (first, second, tol, rel, abs_err, rel_err)


# ========================
# === Test the helpers ===
# ========================


# --- Tests for approx_equal ---

class ApproxEqualSymmetryTest(unittest.TestCase):
    # Test symmetry of approx_equal.

    def test_relative_symmetry(self):
        # Check that approx_equal treats relative error symmetrically.
        # (a-b)/a is usually not equal to (a-b)/b. Ensure that this
        # doesn't matter.
        #
        #   Note: the reason for this test is that an early version
        #   of approx_equal was not symmetric. A relative error test
        #   would pass, or fail, depending on which value was passed
        #   as the first argument.
        #
        args1 = [2456, 37.8, -12.45, Decimal('2.54'), Fraction(17, 54)]
        args2 = [2459, 37.2, -12.41, Decimal('2.59'), Fraction(15, 54)]
        assert len(args1) == len(args2)
        for a, b in zip(args1, args2):
            self.do_relative_symmetry(a, b)

    def do_relative_symmetry(self, a, b):
        a, b = min(a, b), max(a, b)
        assert a < b
        delta = b - a  # The absolute difference between the values.
        rel_err1, rel_err2 = abs(delta/a), abs(delta/b)
        # Choose an error margin halfway between the two.
        rel = (rel_err1 + rel_err2)/2
        # Now see that values a and b compare approx equal regardless of
        # which is given first.
        self.assertTrue(approx_equal(a, b, tol=0, rel=rel))
        self.assertTrue(approx_equal(b, a, tol=0, rel=rel))

    def test_symmetry(self):
        # Test that approx_equal(a, b) == approx_equal(b, a)
        args = [-23, -2, 5, 107, 93568]
        delta = 2
        for a in args:
            for type_ in (int, float, Decimal, Fraction):
                x = type_(a)*100
                y = x + delta
                r = abs(delta/max(x, y))
                # There are five cases to check:
                # 1) actual error <= tol, <= rel
                self.do_symmetry_test(x, y, tol=delta, rel=r)
                self.do_symmetry_test(x, y, tol=delta+1, rel=2*r)
                # 2) actual error > tol, > rel
                self.do_symmetry_test(x, y, tol=delta-1, rel=r/2)
                # 3) actual error <= tol, > rel
                self.do_symmetry_test(x, y, tol=delta, rel=r/2)
                # 4) actual error > tol, <= rel
                self.do_symmetry_test(x, y, tol=delta-1, rel=r)
                self.do_symmetry_test(x, y, tol=delta-1, rel=2*r)
                # 5) exact equality test
                self.do_symmetry_test(x, x, tol=0, rel=0)
                self.do_symmetry_test(x, y, tol=0, rel=0)

    def do_symmetry_test(self, a, b, tol, rel):
        template = "approx_equal comparisons don't match for %r"
        flag1 = approx_equal(a, b, tol, rel)
        flag2 = approx_equal(b, a, tol, rel)
        self.assertEqual(flag1, flag2, template.format((a, b, tol, rel)))


class ApproxEqualExactTest(unittest.TestCase):
    # Test the approx_equal function with exactly equal values.
    # Equal values should compare as approximately equal.
    # Test cases for exactly equal values, which should compare approx
    # equal regardless of the error tolerances given.

    def do_exactly_equal_test(self, x, tol, rel):
        result = approx_equal(x, x, tol=tol, rel=rel)
        self.assertTrue(result, 'equality failure for x=%r' % x)
        result = approx_equal(-x, -x, tol=tol, rel=rel)
        self.assertTrue(result, 'equality failure for x=%r' % -x)

    def test_exactly_equal_ints(self):
        # Test that equal int values are exactly equal.
        for n in [42, 19740, 14974, 230, 1795, 700245, 36587]:
            self.do_exactly_equal_test(n, 0, 0)

    def test_exactly_equal_floats(self):
        # Test that equal float values are exactly equal.
        for x in [0.42, 1.9740, 1497.4, 23.0, 179.5, 70.0245, 36.587]:
            self.do_exactly_equal_test(x, 0, 0)

    def test_exactly_equal_fractions(self):
        # Test that equal Fraction values are exactly equal.
        F = Fraction
        for f in [F(1, 2), F(0), F(5, 3), F(9, 7), F(35, 36), F(3, 7)]:
            self.do_exactly_equal_test(f, 0, 0)

    def test_exactly_equal_decimals(self):
        # Test that equal Decimal values are exactly equal.
        D = Decimal
        for d in map(D, "8.2 31.274 912.04 16.745 1.2047".split()):
            self.do_exactly_equal_test(d, 0, 0)

    def test_exactly_equal_absolute(self):
        # Test that equal values are exactly equal with an absolute error.
        for n in [16, 1013, 1372, 1198, 971, 4]:
            # Test as ints.
            self.do_exactly_equal_test(n, 0.01, 0)
            # Test as floats.
            self.do_exactly_equal_test(n/10, 0.01, 0)
            # Test as Fractions.
            f = Fraction(n, 1234)
            self.do_exactly_equal_test(f, 0.01, 0)

    def test_exactly_equal_absolute_decimals(self):
        # Test equal Decimal values are exactly equal with an absolute error.
        self.do_exactly_equal_test(Decimal("3.571"), Decimal("0.01"), 0)
        self.do_exactly_equal_test(-Decimal("81.3971"), Decimal("0.01"), 0)

    def test_exactly_equal_relative(self):
        # Test that equal values are exactly equal with a relative error.
        for x in [8347, 101.3, -7910.28, Fraction(5, 21)]:
            self.do_exactly_equal_test(x, 0, 0.01)
        self.do_exactly_equal_test(Decimal("11.68"), 0, Decimal("0.01"))

    def test_exactly_equal_both(self):
        # Test that equal values are equal when both tol and rel are given.
        for x in [41017, 16.742, -813.02, Fraction(3, 8)]:
            self.do_exactly_equal_test(x, 0.1, 0.01)
        D = Decimal
        self.do_exactly_equal_test(D("7.2"), D("0.1"), D("0.01"))


class ApproxEqualUnequalTest(unittest.TestCase):
    # Unequal values should compare unequal with zero error tolerances.
    # Test cases for unequal values, with exact equality test.

    def do_exactly_unequal_test(self, x):
        for a in (x, -x):
            result = approx_equal(a, a+1, tol=0, rel=0)
            self.assertFalse(result, 'inequality failure for x=%r' % a)

    def test_exactly_unequal_ints(self):
        # Test unequal int values are unequal with zero error tolerance.
        for n in [951, 572305, 478, 917, 17240]:
            self.do_exactly_unequal_test(n)

    def test_exactly_unequal_floats(self):
        # Test unequal float values are unequal with zero error tolerance.
        for x in [9.51, 5723.05, 47.8, 9.17, 17.24]:
            self.do_exactly_unequal_test(x)

    def test_exactly_unequal_fractions(self):
        # Test that unequal Fractions are unequal with zero error tolerance.
        F = Fraction
        for f in [F(1, 5), F(7, 9), F(12, 11), F(101, 99023)]:
            self.do_exactly_unequal_test(f)

    def test_exactly_unequal_decimals(self):
        # Test that unequal Decimals are unequal with zero error tolerance.
        for d in map(Decimal, "3.1415 298.12 3.47 18.996 0.00245".split()):
            self.do_exactly_unequal_test(d)


class ApproxEqualInexactTest(unittest.TestCase):
    # Inexact test cases for approx_error.
    # Test cases when comparing two values that are not exactly equal.

    # === Absolute error tests ===

    def do_approx_equal_abs_test(self, x, delta):
        template = "Test failure for x={!r}, y={!r}"
        for y in (x + delta, x - delta):
            msg = template.format(x, y)
            self.assertTrue(approx_equal(x, y, tol=2*delta, rel=0), msg)
            self.assertFalse(approx_equal(x, y, tol=delta/2, rel=0), msg)

    def test_approx_equal_absolute_ints(self):
        # Test approximate equality of ints with an absolute error.
        for n in [-10737, -1975, -7, -2, 0, 1, 9, 37, 423, 9874, 23789110]:
            self.do_approx_equal_abs_test(n, 10)
            self.do_approx_equal_abs_test(n, 2)

    def test_approx_equal_absolute_floats(self):
        # Test approximate equality of floats with an absolute error.
        for x in [-284.126, -97.1, -3.4, -2.15, 0.5, 1.0, 7.8, 4.23, 3817.4]:
            self.do_approx_equal_abs_test(x, 1.5)
            self.do_approx_equal_abs_test(x, 0.01)
            self.do_approx_equal_abs_test(x, 0.0001)

    def test_approx_equal_absolute_fractions(self):
        # Test approximate equality of Fractions with an absolute error.
        delta = Fraction(1, 29)
        numerators = [-84, -15, -2, -1, 0, 1, 5, 17, 23, 34, 71]
        for f in (Fraction(n, 29) for n in numerators):
            self.do_approx_equal_abs_test(f, delta)
            self.do_approx_equal_abs_test(f, float(delta))

    def test_approx_equal_absolute_decimals(self):
        # Test approximate equality of Decimals with an absolute error.
        delta = Decimal("0.01")
        for d in map(Decimal, "1.0 3.5 36.08 61.79 7912.3648".split()):
            self.do_approx_equal_abs_test(d, delta)
            self.do_approx_equal_abs_test(-d, delta)

    def test_cross_zero(self):
        # Test for the case of the two values having opposite signs.
        self.assertTrue(approx_equal(1e-5, -1e-5, tol=1e-4, rel=0))

    # === Relative error tests ===

    def do_approx_equal_rel_test(self, x, delta):
        template = "Test failure for x={!r}, y={!r}"
        for y in (x*(1+delta), x*(1-delta)):
            msg = template.format(x, y)
            self.assertTrue(approx_equal(x, y, tol=0, rel=2*delta), msg)
            self.assertFalse(approx_equal(x, y, tol=0, rel=delta/2), msg)

    def test_approx_equal_relative_ints(self):
        # Test approximate equality of ints with a relative error.
        self.assertTrue(approx_equal(64, 47, tol=0, rel=0.36))
        self.assertTrue(approx_equal(64, 47, tol=0, rel=0.37))
        # ---
        self.assertTrue(approx_equal(449, 512, tol=0, rel=0.125))
        self.assertTrue(approx_equal(448, 512, tol=0, rel=0.125))
        self.assertFalse(approx_equal(447, 512, tol=0, rel=0.125))

    def test_approx_equal_relative_floats(self):
        # Test approximate equality of floats with a relative error.
        for x in [-178.34, -0.1, 0.1, 1.0, 36.97, 2847.136, 9145.074]:
            self.do_approx_equal_rel_test(x, 0.02)
            self.do_approx_equal_rel_test(x, 0.0001)

    def test_approx_equal_relative_fractions(self):
        # Test approximate equality of Fractions with a relative error.
        F = Fraction
        delta = Fraction(3, 8)
        for f in [F(3, 84), F(17, 30), F(49, 50), F(92, 85)]:
            for d in (delta, float(delta)):
                self.do_approx_equal_rel_test(f, d)
                self.do_approx_equal_rel_test(-f, d)

    def test_approx_equal_relative_decimals(self):
        # Test approximate equality of Decimals with a relative error.
        for d in map(Decimal, "0.02 1.0 5.7 13.67 94.138 91027.9321".split()):
            self.do_approx_equal_rel_test(d, Decimal("0.001"))
            self.do_approx_equal_rel_test(-d, Decimal("0.05"))

    # === Both absolute and relative error tests ===

    # There are four cases to consider:
    #   1) actual error <= both absolute and relative error
    #   2) actual error <= absolute error but > relative error
    #   3) actual error <= relative error but > absolute error
    #   4) actual error > both absolute and relative error

    def do_check_both(self, a, b, tol, rel, tol_flag, rel_flag):
        check = self.assertTrue if tol_flag else self.assertFalse
        check(approx_equal(a, b, tol=tol, rel=0))
        check = self.assertTrue if rel_flag else self.assertFalse
        check(approx_equal(a, b, tol=0, rel=rel))
        check = self.assertTrue if (tol_flag or rel_flag) else self.assertFalse
        check(approx_equal(a, b, tol=tol, rel=rel))

    def test_approx_equal_both1(self):
        # Test actual error <= both absolute and relative error.
        self.do_check_both(7.955, 7.952, 0.004, 3.8e-4, True, True)
        self.do_check_both(-7.387, -7.386, 0.002, 0.0002, True, True)

    def test_approx_equal_both2(self):
        # Test actual error <= absolute error but > relative error.
        self.do_check_both(7.955, 7.952, 0.004, 3.7e-4, True, False)

    def test_approx_equal_both3(self):
        # Test actual error <= relative error but > absolute error.
        self.do_check_both(7.955, 7.952, 0.001, 3.8e-4, False, True)

    def test_approx_equal_both4(self):
        # Test actual error > both absolute and relative error.
        self.do_check_both(2.78, 2.75, 0.01, 0.001, False, False)
        self.do_check_both(971.44, 971.47, 0.02, 3e-5, False, False)


class ApproxEqualSpecialsTest(unittest.TestCase):
    # Test approx_equal with NANs and INFs and zeroes.

    def test_inf(self):
        for type_ in (float, Decimal):
            inf = type_('inf')
            self.assertTrue(approx_equal(inf, inf))
            self.assertTrue(approx_equal(inf, inf, 0, 0))
            self.assertTrue(approx_equal(inf, inf, 1, 0.01))
            self.assertTrue(approx_equal(-inf, -inf))
            self.assertFalse(approx_equal(inf, -inf))
            self.assertFalse(approx_equal(inf, 1000))

    def test_nan(self):
        for type_ in (float, Decimal):
            nan = type_('nan')
            for other in (nan, type_('inf'), 1000):
                self.assertFalse(approx_equal(nan, other))

    def test_float_zeroes(self):
        nzero = math.copysign(0.0, -1)
        self.assertTrue(approx_equal(nzero, 0.0, tol=0.1, rel=0.1))

    def test_decimal_zeroes(self):
        nzero = Decimal("-0.0")
        self.assertTrue(approx_equal(nzero, Decimal(0), tol=0.1, rel=0.1))


class TestApproxEqualErrors(unittest.TestCase):
    # Test error conditions of approx_equal.

    def test_bad_tol(self):
        # Test negative tol raises.
        self.assertRaises(ValueError, approx_equal, 100, 100, -1, 0.1)

    def test_bad_rel(self):
        # Test negative rel raises.
        self.assertRaises(ValueError, approx_equal, 100, 100, 1, -0.1)


# --- Tests for NumericTestCase ---

# The formatting routine that generates the error messages is complex enough
# that it too needs testing.

class TestNumericTestCase(unittest.TestCase):
    # The exact wording of NumericTestCase error messages is *not* guaranteed,
    # but we need to give them some sort of test to ensure that they are
    # generated correctly. As a compromise, we look for specific substrings
    # that are expected to be found even if the overall error message changes.

    def do_test(self, args):
        actual_msg = NumericTestCase._make_std_err_msg(*args)
        expected = self.generate_substrings(*args)
        for substring in expected:
            self.assertIn(substring, actual_msg)

    def test_numerictestcase_is_testcase(self):
        # Ensure that NumericTestCase actually is a TestCase.
        self.assertTrue(issubclass(NumericTestCase, unittest.TestCase))

    def test_error_msg_numeric(self):
        # Test the error message generated for numeric comparisons.
        args = (2.5, 4.0, 0.5, 0.25, None)
        self.do_test(args)

    def test_error_msg_sequence(self):
        # Test the error message generated for sequence comparisons.
        args = (3.75, 8.25, 1.25, 0.5, 7)
        self.do_test(args)

    def generate_substrings(self, first, second, tol, rel, idx):
        """Return substrings we expect to see in error messages."""
        abs_err, rel_err = _calc_errors(first, second)
        substrings = [
                'tol=%r' % tol,
                'rel=%r' % rel,
                'absolute error = %r' % abs_err,
                'relative error = %r' % rel_err,
                ]
        if idx is not None:
            substrings.append('differ at index %d' % idx)
        return substrings


# =======================================
# === Tests for the statistics module ===
# =======================================


class GlobalsTest(unittest.TestCase):
    module = statistics
    expected_metadata = ["__doc__", "__all__"]

    def test_meta(self):
        # Test for the existence of metadata.
        for meta in self.expected_metadata:
            self.assertTrue(hasattr(self.module, meta),
                            "%s not present" % meta)

    def test_check_all(self):
        # Check everything in __all__ exists and is public.
        module = self.module
        for name in module.__all__:
            # No private names in __all__:
            self.assertFalse(name.startswith("_"),
                             'private name "%s" in __all__' % name)
            # And anything in __all__ must exist:
            self.assertTrue(hasattr(module, name),
                            'missing name "%s" in __all__' % name)


class DocTests(unittest.TestCase):
    @unittest.skipIf(sys.flags.optimize >= 2,
                     "Docstrings are omitted with -OO and above")
    def test_doc_tests(self):
        failed, tried = doctest.testmod(statistics)
        self.assertGreater(tried, 0)
        self.assertEqual(failed, 0)

class StatisticsErrorTest(unittest.TestCase):
    def test_has_exception(self):
        errmsg = (
                "Expected StatisticsError to be a ValueError, but got a"
                " subclass of %r instead."
                )
        self.assertTrue(hasattr(statistics, 'StatisticsError'))
        self.assertTrue(
                issubclass(statistics.StatisticsError, ValueError),
                errmsg % statistics.StatisticsError.__base__
                )


# === Tests for private utility functions ===

class ExactRatioTest(unittest.TestCase):
    # Test _exact_ratio utility.

    def test_int(self):
        for i in (-20, -3, 0, 5, 99, 10**20):
            self.assertEqual(statistics._exact_ratio(i), (i, 1))

    def test_fraction(self):
        numerators = (-5, 1, 12, 38)
        for n in numerators:
            f = Fraction(n, 37)
            self.assertEqual(statistics._exact_ratio(f), (n, 37))

    def test_float(self):
        self.assertEqual(statistics._exact_ratio(0.125), (1, 8))
        self.assertEqual(statistics._exact_ratio(1.125), (9, 8))
        data = [random.uniform(-100, 100) for _ in range(100)]
        for x in data:
            num, den = statistics._exact_ratio(x)
            self.assertEqual(x, num/den)

    def test_decimal(self):
        D = Decimal
        _exact_ratio = statistics._exact_ratio
        self.assertEqual(_exact_ratio(D("0.125")), (125, 1000))
        self.assertEqual(_exact_ratio(D("12.345")), (12345, 1000))
        self.assertEqual(_exact_ratio(D("-1.98")), (-198, 100))


class DecimalToRatioTest(unittest.TestCase):
    # Test _decimal_to_ratio private function.

    def testSpecialsRaise(self):
        # Test that NANs and INFs raise ValueError.
        # Non-special values are covered by _exact_ratio above.
        for d in (Decimal('NAN'), Decimal('sNAN'), Decimal('INF')):
            self.assertRaises(ValueError, statistics._decimal_to_ratio, d)

    def test_sign(self):
        # Test sign is calculated correctly.
        numbers = [Decimal("9.8765e12"), Decimal("9.8765e-12")]
        for d in numbers:
            # First test positive decimals.
            assert d > 0
            num, den = statistics._decimal_to_ratio(d)
            self.assertGreaterEqual(num, 0)
            self.assertGreater(den, 0)
            # Then test negative decimals.
            num, den = statistics._decimal_to_ratio(-d)
            self.assertLessEqual(num, 0)
            self.assertGreater(den, 0)

    def test_negative_exponent(self):
        # Test result when the exponent is negative.
        t = statistics._decimal_to_ratio(Decimal("0.1234"))
        self.assertEqual(t, (1234, 10000))

    def test_positive_exponent(self):
        # Test results when the exponent is positive.
        t = statistics._decimal_to_ratio(Decimal("1.234e7"))
        self.assertEqual(t, (12340000, 1))

    def test_regression_20536(self):
        # Regression test for issue 20536.
        # See http://bugs.python.org/issue20536
        t = statistics._decimal_to_ratio(Decimal("1e2"))
        self.assertEqual(t, (100, 1))
        t = statistics._decimal_to_ratio(Decimal("1.47e5"))
        self.assertEqual(t, (147000, 1))


class CheckTypeTest(unittest.TestCase):
    # Test _check_type private function.

    def test_allowed(self):
        # Test that a type which should be allowed is allowed.
        allowed = set([int, float])
        statistics._check_type(int, allowed)
        statistics._check_type(float, allowed)

    def test_not_allowed(self):
        # Test that a type which should not be allowed raises.
        allowed = set([int, float])
        self.assertRaises(TypeError, statistics._check_type, Decimal, allowed)

    def test_add_to_allowed(self):
        # Test that a second type will be added to the allowed set.
        allowed = set([int])
        statistics._check_type(float, allowed)
        self.assertEqual(allowed, set([int, float]))


# === Tests for public functions ===

class UnivariateCommonMixin:
    # Common tests for most univariate functions that take a data argument.

    def test_no_args(self):
        # Fail if given no arguments.
        self.assertRaises(TypeError, self.func)

    def test_empty_data(self):
        # Fail when the data argument (first argument) is empty.
        for empty in ([], (), iter([])):
            self.assertRaises(statistics.StatisticsError, self.func, empty)

    def prepare_data(self):
        """Return int data for various tests."""
        data = list(range(10))
        while data == sorted(data):
            random.shuffle(data)
        return data

    def test_no_inplace_modifications(self):
        # Test that the function does not modify its input data.
        data = self.prepare_data()
        assert len(data) != 1  # Necessary to avoid infinite loop.
        assert data != sorted(data)
        saved = data[:]
        assert data is not saved
        _ = self.func(data)
        self.assertListEqual(data, saved, "data has been modified")

    def test_order_doesnt_matter(self):
        # Test that the order of data points doesn't change the result.

        # CAUTION: due to floating point rounding errors, the result actually
        # may depend on the order. Consider this test representing an ideal.
        # To avoid this test failing, only test with exact values such as ints
        # or Fractions.
        data = [1, 2, 3, 3, 3, 4, 5, 6]*100
        expected = self.func(data)
        random.shuffle(data)
        actual = self.func(data)
        self.assertEqual(expected, actual)

    def test_type_of_data_collection(self):
        # Test that the type of iterable data doesn't effect the result.
        class MyList(list):
            pass
        class MyTuple(tuple):
            pass
        def generator(data):
            return (obj for obj in data)
        data = self.prepare_data()
        expected = self.func(data)
        for kind in (list, tuple, iter, MyList, MyTuple, generator):
            result = self.func(kind(data))
            self.assertEqual(result, expected)

    def test_range_data(self):
        # Test that functions work with range objects.
        data = range(20, 50, 3)
        expected = self.func(list(data))
        self.assertEqual(self.func(data), expected)

    def test_bad_arg_types(self):
        # Test that function raises when given data of the wrong type.

        # Don't roll the following into a loop like this:
        #   for bad in list_of_bad:
        #       self.check_for_type_error(bad)
        #
        # Since assertRaises doesn't show the arguments that caused the test
        # failure, it is very difficult to debug these test failures when the
        # following are in a loop.
        self.check_for_type_error(None)
        self.check_for_type_error(23)
        self.check_for_type_error(42.0)
        self.check_for_type_error(object())

    def check_for_type_error(self, *args):
        self.assertRaises(TypeError, self.func, *args)

    def test_type_of_data_element(self):
        # Check the type of data elements doesn't affect the numeric result.
        # This is a weaker test than UnivariateTypeMixin.testTypesConserved,
        # because it checks the numeric result by equality, but not by type.
        class MyFloat(float):
            def __truediv__(self, other):
                return type(self)(super().__truediv__(other))
            def __add__(self, other):
                return type(self)(super().__add__(other))
            __radd__ = __add__

        raw = self.prepare_data()
        expected = self.func(raw)
        for kind in (float, MyFloat, Decimal, Fraction):
            data = [kind(x) for x in raw]
            result = type(expected)(self.func(data))
            self.assertEqual(result, expected)


class UnivariateTypeMixin:
    """Mixin class for type-conserving functions.

    This mixin class holds test(s) for functions which conserve the type of
    individual data points. E.g. the mean of a list of Fractions should itself
    be a Fraction.

    Not all tests to do with types need go in this class. Only those that
    rely on the function returning the same type as its input data.
    """
    def test_types_conserved(self):
        # Test that functions keeps the same type as their data points.
        # (Excludes mixed data types.) This only tests the type of the return
        # result, not the value.
        class MyFloat(float):
            def __truediv__(self, other):
                return type(self)(super().__truediv__(other))
            def __sub__(self, other):
                return type(self)(super().__sub__(other))
            def __rsub__(self, other):
                return type(self)(super().__rsub__(other))
            def __pow__(self, other):
                return type(self)(super().__pow__(other))
            def __add__(self, other):
                return type(self)(super().__add__(other))
            __radd__ = __add__

        data = self.prepare_data()
        for kind in (float, Decimal, Fraction, MyFloat):
            d = [kind(x) for x in data]
            result = self.func(d)
            self.assertIs(type(result), kind)


class TestSum(NumericTestCase, UnivariateCommonMixin, UnivariateTypeMixin):
    # Test cases for statistics._sum() function.

    def setUp(self):
        self.func = statistics._sum

    def test_empty_data(self):
        # Override test for empty data.
        for data in ([], (), iter([])):
            self.assertEqual(self.func(data), 0)
            self.assertEqual(self.func(data, 23), 23)
            self.assertEqual(self.func(data, 2.3), 2.3)

    def test_ints(self):
        self.assertEqual(self.func([1, 5, 3, -4, -8, 20, 42, 1]), 60)
        self.assertEqual(self.func([4, 2, 3, -8, 7], 1000), 1008)

    def test_floats(self):
        self.assertEqual(self.func([0.25]*20), 5.0)
        self.assertEqual(self.func([0.125, 0.25, 0.5, 0.75], 1.5), 3.125)

    def test_fractions(self):
        F = Fraction
        self.assertEqual(self.func([Fraction(1, 1000)]*500), Fraction(1, 2))

    def test_decimals(self):
        D = Decimal
        data = [D("0.001"), D("5.246"), D("1.702"), D("-0.025"),
                D("3.974"), D("2.328"), D("4.617"), D("2.843"),
                ]
        self.assertEqual(self.func(data), Decimal("20.686"))

    def test_compare_with_math_fsum(self):
        # Compare with the math.fsum function.
        # Ideally we ought to get the exact same result, but sometimes
        # we differ by a very slight amount :-(
        data = [random.uniform(-100, 1000) for _ in range(1000)]
        self.assertApproxEqual(self.func(data), math.fsum(data), rel=2e-16)

    def test_start_argument(self):
        # Test that the optional start argument works correctly.
        data = [random.uniform(1, 1000) for _ in range(100)]
        t = self.func(data)
        self.assertEqual(t+42, self.func(data, 42))
        self.assertEqual(t-23, self.func(data, -23))
        self.assertEqual(t+1e20, self.func(data, 1e20))

    def test_strings_fail(self):
        # Sum of strings should fail.
        self.assertRaises(TypeError, self.func, [1, 2, 3], '999')
        self.assertRaises(TypeError, self.func, [1, 2, 3, '999'])

    def test_bytes_fail(self):
        # Sum of bytes should fail.
        self.assertRaises(TypeError, self.func, [1, 2, 3], b'999')
        self.assertRaises(TypeError, self.func, [1, 2, 3, b'999'])

    def test_mixed_sum(self):
        # Mixed input types are not (currently) allowed.
        # Check that mixed data types fail.
        self.assertRaises(TypeError, self.func, [1, 2.0, Fraction(1, 2)])
        # And so does mixed start argument.
        self.assertRaises(TypeError, self.func, [1, 2.0], Decimal(1))


class SumTortureTest(NumericTestCase):
    def test_torture(self):
        # Tim Peters' torture test for sum, and variants of same.
        self.assertEqual(statistics._sum([1, 1e100, 1, -1e100]*10000), 20000.0)
        self.assertEqual(statistics._sum([1e100, 1, 1, -1e100]*10000), 20000.0)
        self.assertApproxEqual(
            statistics._sum([1e-100, 1, 1e-100, -1]*10000), 2.0e-96, rel=5e-16
            )


class SumSpecialValues(NumericTestCase):
    # Test that sum works correctly with IEEE-754 special values.

    def test_nan(self):
        for type_ in (float, Decimal):
            nan = type_('nan')
            result = statistics._sum([1, nan, 2])
            self.assertIs(type(result), type_)
            self.assertTrue(math.isnan(result))

    def check_infinity(self, x, inf):
        """Check x is an infinity of the same type and sign as inf."""
        self.assertTrue(math.isinf(x))
        self.assertIs(type(x), type(inf))
        self.assertEqual(x > 0, inf > 0)
        assert x == inf

    def do_test_inf(self, inf):
        # Adding a single infinity gives infinity.
        result = statistics._sum([1, 2, inf, 3])
        self.check_infinity(result, inf)
        # Adding two infinities of the same sign also gives infinity.
        result = statistics._sum([1, 2, inf, 3, inf, 4])
        self.check_infinity(result, inf)

    def test_float_inf(self):
        inf = float('inf')
        for sign in (+1, -1):
            self.do_test_inf(sign*inf)

    def test_decimal_inf(self):
        inf = Decimal('inf')
        for sign in (+1, -1):
            self.do_test_inf(sign*inf)

    def test_float_mismatched_infs(self):
        # Test that adding two infinities of opposite sign gives a NAN.
        inf = float('inf')
        result = statistics._sum([1, 2, inf, 3, -inf, 4])
        self.assertTrue(math.isnan(result))

    def test_decimal_extendedcontext_mismatched_infs_to_nan(self):
        # Test adding Decimal INFs with opposite sign returns NAN.
        inf = Decimal('inf')
        data = [1, 2, inf, 3, -inf, 4]
        with decimal.localcontext(decimal.ExtendedContext):
            self.assertTrue(math.isnan(statistics._sum(data)))

    def test_decimal_basiccontext_mismatched_infs_to_nan(self):
        # Test adding Decimal INFs with opposite sign raises InvalidOperation.
        inf = Decimal('inf')
        data = [1, 2, inf, 3, -inf, 4]
        with decimal.localcontext(decimal.BasicContext):
            self.assertRaises(decimal.InvalidOperation, statistics._sum, data)

    def test_decimal_snan_raises(self):
        # Adding sNAN should raise InvalidOperation.
        sNAN = Decimal('sNAN')
        data = [1, sNAN, 2]
        self.assertRaises(decimal.InvalidOperation, statistics._sum, data)


# === Tests for averages ===

class AverageMixin(UnivariateCommonMixin):
    # Mixin class holding common tests for averages.

    def test_single_value(self):
        # Average of a single value is the value itself.
        for x in (23, 42.5, 1.3e15, Fraction(15, 19), Decimal('0.28')):
            self.assertEqual(self.func([x]), x)

    def test_repeated_single_value(self):
        # The average of a single repeated value is the value itself.
        for x in (3.5, 17, 2.5e15, Fraction(61, 67), Decimal('4.9712')):
            for count in (2, 5, 10, 20):
                data = [x]*count
                self.assertEqual(self.func(data), x)


class TestMean(NumericTestCase, AverageMixin, UnivariateTypeMixin):
    def setUp(self):
        self.func = statistics.mean

    def test_torture_pep(self):
        # "Torture Test" from PEP-450.
        self.assertEqual(self.func([1e100, 1, 3, -1e100]), 1)

    def test_ints(self):
        # Test mean with ints.
        data = [0, 1, 2, 3, 3, 3, 4, 5, 5, 6, 7, 7, 7, 7, 8, 9]
        random.shuffle(data)
        self.assertEqual(self.func(data), 4.8125)

    def test_floats(self):
        # Test mean with floats.
        data = [17.25, 19.75, 20.0, 21.5, 21.75, 23.25, 25.125, 27.5]
        random.shuffle(data)
        self.assertEqual(self.func(data), 22.015625)

    def test_decimals(self):
        # Test mean with ints.
        D = Decimal
        data = [D("1.634"), D("2.517"), D("3.912"), D("4.072"), D("5.813")]
        random.shuffle(data)
        self.assertEqual(self.func(data), D("3.5896"))

    def test_fractions(self):
        # Test mean with Fractions.
        F = Fraction
        data = [F(1, 2), F(2, 3), F(3, 4), F(4, 5), F(5, 6), F(6, 7), F(7, 8)]
        random.shuffle(data)
        self.assertEqual(self.func(data), F(1479, 1960))

    def test_inf(self):
        # Test mean with infinities.
        raw = [1, 3, 5, 7, 9]  # Use only ints, to avoid TypeError later.
        for kind in (float, Decimal):
            for sign in (1, -1):
                inf = kind("inf")*sign
                data = raw + [inf]
                result = self.func(data)
                self.assertTrue(math.isinf(result))
                self.assertEqual(result, inf)

    def test_mismatched_infs(self):
        # Test mean with infinities of opposite sign.
        data = [2, 4, 6, float('inf'), 1, 3, 5, float('-inf')]
        result = self.func(data)
        self.assertTrue(math.isnan(result))

    def test_nan(self):
        # Test mean with NANs.
        raw = [1, 3, 5, 7, 9]  # Use only ints, to avoid TypeError later.
        for kind in (float, Decimal):
            inf = kind("nan")
            data = raw + [inf]
            result = self.func(data)
            self.assertTrue(math.isnan(result))

    def test_big_data(self):
        # Test adding a large constant to every data point.
        c = 1e9
        data = [3.4, 4.5, 4.9, 6.7, 6.8, 7.2, 8.0, 8.1, 9.4]
        expected = self.func(data) + c
        assert expected != c
        result = self.func([x+c for x in data])
        self.assertEqual(result, expected)

    def test_doubled_data(self):
        # Mean of [a,b,c...z] should be same as for [a,a,b,b,c,c...z,z].
        data = [random.uniform(-3, 5) for _ in range(1000)]
        expected = self.func(data)
        actual = self.func(data*2)
        self.assertApproxEqual(actual, expected)

    def test_regression_20561(self):
        # Regression test for issue 20561.
        # See http://bugs.python.org/issue20561
        d = Decimal('1e4')
        self.assertEqual(statistics.mean([d]), d)


class TestMedian(NumericTestCase, AverageMixin):
    # Common tests for median and all median.* functions.
    def setUp(self):
        self.func = statistics.median

    def prepare_data(self):
        """Overload method from UnivariateCommonMixin."""
        data = super().prepare_data()
        if len(data)%2 != 1:
            data.append(2)
        return data

    def test_even_ints(self):
        # Test median with an even number of int data points.
        data = [1, 2, 3, 4, 5, 6]
        assert len(data)%2 == 0
        self.assertEqual(self.func(data), 3.5)

    def test_odd_ints(self):
        # Test median with an odd number of int data points.
        data = [1, 2, 3, 4, 5, 6, 9]
        assert len(data)%2 == 1
        self.assertEqual(self.func(data), 4)

    def test_odd_fractions(self):
        # Test median works with an odd number of Fractions.
        F = Fraction
        data = [F(1, 7), F(2, 7), F(3, 7), F(4, 7), F(5, 7)]
        assert len(data)%2 == 1
        random.shuffle(data)
        self.assertEqual(self.func(data), F(3, 7))

    def test_even_fractions(self):
        # Test median works with an even number of Fractions.
        F = Fraction
        data = [F(1, 7), F(2, 7), F(3, 7), F(4, 7), F(5, 7), F(6, 7)]
        assert len(data)%2 == 0
        random.shuffle(data)
        self.assertEqual(self.func(data), F(1, 2))

    def test_odd_decimals(self):
        # Test median works with an odd number of Decimals.
        D = Decimal
        data = [D('2.5'), D('3.1'), D('4.2'), D('5.7'), D('5.8')]
        assert len(data)%2 == 1
        random.shuffle(data)
        self.assertEqual(self.func(data), D('4.2'))

    def test_even_decimals(self):
        # Test median works with an even number of Decimals.
        D = Decimal
        data = [D('1.2'), D('2.5'), D('3.1'), D('4.2'), D('5.7'), D('5.8')]
        assert len(data)%2 == 0
        random.shuffle(data)
        self.assertEqual(self.func(data), D('3.65'))


class TestMedianDataType(NumericTestCase, UnivariateTypeMixin):
    # Test conservation of data element type for median.
    def setUp(self):
        self.func = statistics.median

    def prepare_data(self):
        data = list(range(15))
        assert len(data)%2 == 1
        while data == sorted(data):
            random.shuffle(data)
        return data


class TestMedianLow(TestMedian, UnivariateTypeMixin):
    def setUp(self):
        self.func = statistics.median_low

    def test_even_ints(self):
        # Test median_low with an even number of ints.
        data = [1, 2, 3, 4, 5, 6]
        assert len(data)%2 == 0
        self.assertEqual(self.func(data), 3)

    def test_even_fractions(self):
        # Test median_low works with an even number of Fractions.
        F = Fraction
        data = [F(1, 7), F(2, 7), F(3, 7), F(4, 7), F(5, 7), F(6, 7)]
        assert len(data)%2 == 0
        random.shuffle(data)
        self.assertEqual(self.func(data), F(3, 7))

    def test_even_decimals(self):
        # Test median_low works with an even number of Decimals.
        D = Decimal
        data = [D('1.1'), D('2.2'), D('3.3'), D('4.4'), D('5.5'), D('6.6')]
        assert len(data)%2 == 0
        random.shuffle(data)
        self.assertEqual(self.func(data), D('3.3'))


class TestMedianHigh(TestMedian, UnivariateTypeMixin):
    def setUp(self):
        self.func = statistics.median_high

    def test_even_ints(self):
        # Test median_high with an even number of ints.
        data = [1, 2, 3, 4, 5, 6]
        assert len(data)%2 == 0
        self.assertEqual(self.func(data), 4)

    def test_even_fractions(self):
        # Test median_high works with an even number of Fractions.
        F = Fraction
        data = [F(1, 7), F(2, 7), F(3, 7), F(4, 7), F(5, 7), F(6, 7)]
        assert len(data)%2 == 0
        random.shuffle(data)
        self.assertEqual(self.func(data), F(4, 7))

    def test_even_decimals(self):
        # Test median_high works with an even number of Decimals.
        D = Decimal
        data = [D('1.1'), D('2.2'), D('3.3'), D('4.4'), D('5.5'), D('6.6')]
        assert len(data)%2 == 0
        random.shuffle(data)
        self.assertEqual(self.func(data), D('4.4'))


class TestMedianGrouped(TestMedian):
    # Test median_grouped.
    # Doesn't conserve data element types, so don't use TestMedianType.
    def setUp(self):
        self.func = statistics.median_grouped

    def test_odd_number_repeated(self):
        # Test median.grouped with repeated median values.
        data = [12, 13, 14, 14, 14, 15, 15]
        assert len(data)%2 == 1
        self.assertEqual(self.func(data), 14)
        #---
        data = [12, 13, 14, 14, 14, 14, 15]
        assert len(data)%2 == 1
        self.assertEqual(self.func(data), 13.875)
        #---
        data = [5, 10, 10, 15, 20, 20, 20, 20, 25, 25, 30]
        assert len(data)%2 == 1
        self.assertEqual(self.func(data, 5), 19.375)
        #---
        data = [16, 18, 18, 18, 18, 20, 20, 20, 22, 22, 22, 24, 24, 26, 28]
        assert len(data)%2 == 1
        self.assertApproxEqual(self.func(data, 2), 20.66666667, tol=1e-8)

    def test_even_number_repeated(self):
        # Test median.grouped with repeated median values.
        data = [5, 10, 10, 15, 20, 20, 20, 25, 25, 30]
        assert len(data)%2 == 0
        self.assertApproxEqual(self.func(data, 5), 19.16666667, tol=1e-8)
        #---
        data = [2, 3, 4, 4, 4, 5]
        assert len(data)%2 == 0
        self.assertApproxEqual(self.func(data), 3.83333333, tol=1e-8)
        #---
        data = [2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 6, 6]
        assert len(data)%2 == 0
        self.assertEqual(self.func(data), 4.5)
        #---
        data = [3, 4, 4, 4, 5, 5, 5, 5, 6, 6]
        assert len(data)%2 == 0
        self.assertEqual(self.func(data), 4.75)

    def test_repeated_single_value(self):
        # Override method from AverageMixin.
        # Yet again, failure of median_grouped to conserve the data type
        # causes me headaches :-(
        for x in (5.3, 68, 4.3e17, Fraction(29, 101), Decimal('32.9714')):
            for count in (2, 5, 10, 20):
                data = [x]*count
                self.assertEqual(self.func(data), float(x))

    def test_odd_fractions(self):
        # Test median_grouped works with an odd number of Fractions.
        F = Fraction
        data = [F(5, 4), F(9, 4), F(13, 4), F(13, 4), F(17, 4)]
        assert len(data)%2 == 1
        random.shuffle(data)
        self.assertEqual(self.func(data), 3.0)

    def test_even_fractions(self):
        # Test median_grouped works with an even number of Fractions.
        F = Fraction
        data = [F(5, 4), F(9, 4), F(13, 4), F(13, 4), F(17, 4), F(17, 4)]
        assert len(data)%2 == 0
        random.shuffle(data)
        self.assertEqual(self.func(data), 3.25)

    def test_odd_decimals(self):
        # Test median_grouped works with an odd number of Decimals.
        D = Decimal
        data = [D('5.5'), D('6.5'), D('6.5'), D('7.5'), D('8.5')]
        assert len(data)%2 == 1
        random.shuffle(data)
        self.assertEqual(self.func(data), 6.75)

    def test_even_decimals(self):
        # Test median_grouped works with an even number of Decimals.
        D = Decimal
        data = [D('5.5'), D('5.5'), D('6.5'), D('6.5'), D('7.5'), D('8.5')]
        assert len(data)%2 == 0
        random.shuffle(data)
        self.assertEqual(self.func(data), 6.5)
        #---
        data = [D('5.5'), D('5.5'), D('6.5'), D('7.5'), D('7.5'), D('8.5')]
        assert len(data)%2 == 0
        random.shuffle(data)
        self.assertEqual(self.func(data), 7.0)

    def test_interval(self):
        # Test median_grouped with interval argument.
        data = [2.25, 2.5, 2.5, 2.75, 2.75, 3.0, 3.0, 3.25, 3.5, 3.75]
        self.assertEqual(self.func(data, 0.25), 2.875)
        data = [2.25, 2.5, 2.5, 2.75, 2.75, 2.75, 3.0, 3.0, 3.25, 3.5, 3.75]
        self.assertApproxEqual(self.func(data, 0.25), 2.83333333, tol=1e-8)
        data = [220, 220, 240, 260, 260, 260, 260, 280, 280, 300, 320, 340]
        self.assertEqual(self.func(data, 20), 265.0)


class TestMode(NumericTestCase, AverageMixin, UnivariateTypeMixin):
    # Test cases for the discrete version of mode.
    def setUp(self):
        self.func = statistics.mode

    def prepare_data(self):
        """Overload method from UnivariateCommonMixin."""
        # Make sure test data has exactly one mode.
        return [1, 1, 1, 1, 3, 4, 7, 9, 0, 8, 2]

    def test_range_data(self):
        # Override test from UnivariateCommonMixin.
        data = range(20, 50, 3)
        self.assertRaises(statistics.StatisticsError, self.func, data)

    def test_nominal_data(self):
        # Test mode with nominal data.
        data = 'abcbdb'
        self.assertEqual(self.func(data), 'b')
        data = 'fe fi fo fum fi fi'.split()
        self.assertEqual(self.func(data), 'fi')

    def test_discrete_data(self):
        # Test mode with discrete numeric data.
        data = list(range(10))
        for i in range(10):
            d = data + [i]
            random.shuffle(d)
            self.assertEqual(self.func(d), i)

    def test_bimodal_data(self):
        # Test mode with bimodal data.
        data = [1, 1, 2, 2, 2, 2, 3, 4, 5, 6, 6, 6, 6, 7, 8, 9, 9]
        assert data.count(2) == data.count(6) == 4
        # Check for an exception.
        self.assertRaises(statistics.StatisticsError, self.func, data)

    def test_unique_data_failure(self):
        # Test mode exception when data points are all unique.
        data = list(range(10))
        self.assertRaises(statistics.StatisticsError, self.func, data)

    def test_none_data(self):
        # Test that mode raises TypeError if given None as data.

        # This test is necessary because the implementation of mode uses
        # collections.Counter, which accepts None and returns an empty dict.
        self.assertRaises(TypeError, self.func, None)

    def test_counter_data(self):
        # Test that a Counter is treated like any other iterable.
        data = collections.Counter([1, 1, 1, 2])
        # Since the keys of the counter are treated as data points, not the
        # counts, this should raise.
        self.assertRaises(statistics.StatisticsError, self.func, data)



# === Tests for variances and standard deviations ===

class VarianceStdevMixin(UnivariateCommonMixin):
    # Mixin class holding common tests for variance and std dev.

    # Subclasses should inherit from this before NumericTestClass, in order
    # to see the rel attribute below. See testShiftData for an explanation.

    rel = 1e-12

    def test_single_value(self):
        # Deviation of a single value is zero.
        for x in (11, 19.8, 4.6e14, Fraction(21, 34), Decimal('8.392')):
            self.assertEqual(self.func([x]), 0)

    def test_repeated_single_value(self):
        # The deviation of a single repeated value is zero.
        for x in (7.2, 49, 8.1e15, Fraction(3, 7), Decimal('62.4802')):
            for count in (2, 3, 5, 15):
                data = [x]*count
                self.assertEqual(self.func(data), 0)

    def test_domain_error_regression(self):
        # Regression test for a domain error exception.
        # (Thanks to Geremy Condra.)
        data = [0.123456789012345]*10000
        # All the items are identical, so variance should be exactly zero.
        # We allow some small round-off error, but not much.
        result = self.func(data)
        self.assertApproxEqual(result, 0.0, tol=5e-17)
        self.assertGreaterEqual(result, 0)  # A negative result must fail.

    def test_shift_data(self):
        # Test that shifting the data by a constant amount does not affect
        # the variance or stdev. Or at least not much.

        # Due to rounding, this test should be considered an ideal. We allow
        # some tolerance away from "no change at all" by setting tol and/or rel
        # attributes. Subclasses may set tighter or looser error tolerances.
        raw = [1.03, 1.27, 1.94, 2.04, 2.58, 3.14, 4.75, 4.98, 5.42, 6.78]
        expected = self.func(raw)
        # Don't set shift too high, the bigger it is, the more rounding error.
        shift = 1e5
        data = [x + shift for x in raw]
        self.assertApproxEqual(self.func(data), expected)

    def test_shift_data_exact(self):
        # Like test_shift_data, but result is always exact.
        raw = [1, 3, 3, 4, 5, 7, 9, 10, 11, 16]
        assert all(x==int(x) for x in raw)
        expected = self.func(raw)
        shift = 10**9
        data = [x + shift for x in raw]
        self.assertEqual(self.func(data), expected)

    def test_iter_list_same(self):
        # Test that iter data and list data give the same result.

        # This is an explicit test that iterators and lists are treated the
        # same; justification for this test over and above the similar test
        # in UnivariateCommonMixin is that an earlier design had variance and
        # friends swap between one- and two-pass algorithms, which would
        # sometimes give different results.
        data = [random.uniform(-3, 8) for _ in range(1000)]
        expected = self.func(data)
        self.assertEqual(self.func(iter(data)), expected)


class TestPVariance(VarianceStdevMixin, NumericTestCase, UnivariateTypeMixin):
    # Tests for population variance.
    def setUp(self):
        self.func = statistics.pvariance

    def test_exact_uniform(self):
        # Test the variance against an exact result for uniform data.
        data = list(range(10000))
        random.shuffle(data)
        expected = (10000**2 - 1)/12  # Exact value.
        self.assertEqual(self.func(data), expected)

    def test_ints(self):
        # Test population variance with int data.
        data = [4, 7, 13, 16]
        exact = 22.5
        self.assertEqual(self.func(data), exact)

    def test_fractions(self):
        # Test population variance with Fraction data.
        F = Fraction
        data = [F(1, 4), F(1, 4), F(3, 4), F(7, 4)]
        exact = F(3, 8)
        result = self.func(data)
        self.assertEqual(result, exact)
        self.assertIsInstance(result, Fraction)

    def test_decimals(self):
        # Test population variance with Decimal data.
        D = Decimal
        data = [D("12.1"), D("12.2"), D("12.5"), D("12.9")]
        exact = D('0.096875')
        result = self.func(data)
        self.assertEqual(result, exact)
        self.assertIsInstance(result, Decimal)


class TestVariance(VarianceStdevMixin, NumericTestCase, UnivariateTypeMixin):
    # Tests for sample variance.
    def setUp(self):
        self.func = statistics.variance

    def test_single_value(self):
        # Override method from VarianceStdevMixin.
        for x in (35, 24.7, 8.2e15, Fraction(19, 30), Decimal('4.2084')):
            self.assertRaises(statistics.StatisticsError, self.func, [x])

    def test_ints(self):
        # Test sample variance with int data.
        data = [4, 7, 13, 16]
        exact = 30
        self.assertEqual(self.func(data), exact)

    def test_fractions(self):
        # Test sample variance with Fraction data.
        F = Fraction
        data = [F(1, 4), F(1, 4), F(3, 4), F(7, 4)]
        exact = F(1, 2)
        result = self.func(data)
        self.assertEqual(result, exact)
        self.assertIsInstance(result, Fraction)

    def test_decimals(self):
        # Test sample variance with Decimal data.
        D = Decimal
        data = [D(2), D(2), D(7), D(9)]
        exact = 4*D('9.5')/D(3)
        result = self.func(data)
        self.assertEqual(result, exact)
        self.assertIsInstance(result, Decimal)


class TestPStdev(VarianceStdevMixin, NumericTestCase):
    # Tests for population standard deviation.
    def setUp(self):
        self.func = statistics.pstdev

    def test_compare_to_variance(self):
        # Test that stdev is, in fact, the square root of variance.
        data = [random.uniform(-17, 24) for _ in range(1000)]
        expected = math.sqrt(statistics.pvariance(data))
        self.assertEqual(self.func(data), expected)


class TestStdev(VarianceStdevMixin, NumericTestCase):
    # Tests for sample standard deviation.
    def setUp(self):
        self.func = statistics.stdev

    def test_single_value(self):
        # Override method from VarianceStdevMixin.
        for x in (81, 203.74, 3.9e14, Fraction(5, 21), Decimal('35.719')):
            self.assertRaises(statistics.StatisticsError, self.func, [x])

    def test_compare_to_variance(self):
        # Test that stdev is, in fact, the square root of variance.
        data = [random.uniform(-2, 9) for _ in range(1000)]
        expected = math.sqrt(statistics.variance(data))
        self.assertEqual(self.func(data), expected)


# === Run tests ===

def load_tests(loader, tests, ignore):
    """Used for doctest/unittest integration."""
    tests.addTests(doctest.DocTestSuite())
    return tests


if __name__ == "__main__":
    unittest.main()