/usr/lib/python3.4/test/test_statistics.py is in libpython3.4-testsuite 3.4.2-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 | """Test suite for statistics module, including helper NumericTestCase and
approx_equal function.
"""
import collections
import decimal
import doctest
import math
import random
import sys
import types
import unittest
from decimal import Decimal
from fractions import Fraction
# Module to be tested.
import statistics
# === Helper functions and class ===
def _calc_errors(actual, expected):
"""Return the absolute and relative errors between two numbers.
>>> _calc_errors(100, 75)
(25, 0.25)
>>> _calc_errors(100, 100)
(0, 0.0)
Returns the (absolute error, relative error) between the two arguments.
"""
base = max(abs(actual), abs(expected))
abs_err = abs(actual - expected)
rel_err = abs_err/base if base else float('inf')
return (abs_err, rel_err)
def approx_equal(x, y, tol=1e-12, rel=1e-7):
"""approx_equal(x, y [, tol [, rel]]) => True|False
Return True if numbers x and y are approximately equal, to within some
margin of error, otherwise return False. Numbers which compare equal
will also compare approximately equal.
x is approximately equal to y if the difference between them is less than
an absolute error tol or a relative error rel, whichever is bigger.
If given, both tol and rel must be finite, non-negative numbers. If not
given, default values are tol=1e-12 and rel=1e-7.
>>> approx_equal(1.2589, 1.2587, tol=0.0003, rel=0)
True
>>> approx_equal(1.2589, 1.2587, tol=0.0001, rel=0)
False
Absolute error is defined as abs(x-y); if that is less than or equal to
tol, x and y are considered approximately equal.
Relative error is defined as abs((x-y)/x) or abs((x-y)/y), whichever is
smaller, provided x or y are not zero. If that figure is less than or
equal to rel, x and y are considered approximately equal.
Complex numbers are not directly supported. If you wish to compare to
complex numbers, extract their real and imaginary parts and compare them
individually.
NANs always compare unequal, even with themselves. Infinities compare
approximately equal if they have the same sign (both positive or both
negative). Infinities with different signs compare unequal; so do
comparisons of infinities with finite numbers.
"""
if tol < 0 or rel < 0:
raise ValueError('error tolerances must be non-negative')
# NANs are never equal to anything, approximately or otherwise.
if math.isnan(x) or math.isnan(y):
return False
# Numbers which compare equal also compare approximately equal.
if x == y:
# This includes the case of two infinities with the same sign.
return True
if math.isinf(x) or math.isinf(y):
# This includes the case of two infinities of opposite sign, or
# one infinity and one finite number.
return False
# Two finite numbers.
actual_error = abs(x - y)
allowed_error = max(tol, rel*max(abs(x), abs(y)))
return actual_error <= allowed_error
# This class exists only as somewhere to stick a docstring containing
# doctests. The following docstring and tests were originally in a separate
# module. Now that it has been merged in here, I need somewhere to hang the.
# docstring. Ultimately, this class will die, and the information below will
# either become redundant, or be moved into more appropriate places.
class _DoNothing:
"""
When doing numeric work, especially with floats, exact equality is often
not what you want. Due to round-off error, it is often a bad idea to try
to compare floats with equality. Instead the usual procedure is to test
them with some (hopefully small!) allowance for error.
The ``approx_equal`` function allows you to specify either an absolute
error tolerance, or a relative error, or both.
Absolute error tolerances are simple, but you need to know the magnitude
of the quantities being compared:
>>> approx_equal(12.345, 12.346, tol=1e-3)
True
>>> approx_equal(12.345e6, 12.346e6, tol=1e-3) # tol is too small.
False
Relative errors are more suitable when the values you are comparing can
vary in magnitude:
>>> approx_equal(12.345, 12.346, rel=1e-4)
True
>>> approx_equal(12.345e6, 12.346e6, rel=1e-4)
True
but a naive implementation of relative error testing can run into trouble
around zero.
If you supply both an absolute tolerance and a relative error, the
comparison succeeds if either individual test succeeds:
>>> approx_equal(12.345e6, 12.346e6, tol=1e-3, rel=1e-4)
True
"""
pass
# We prefer this for testing numeric values that may not be exactly equal,
# and avoid using TestCase.assertAlmostEqual, because it sucks :-)
class NumericTestCase(unittest.TestCase):
"""Unit test class for numeric work.
This subclasses TestCase. In addition to the standard method
``TestCase.assertAlmostEqual``, ``assertApproxEqual`` is provided.
"""
# By default, we expect exact equality, unless overridden.
tol = rel = 0
def assertApproxEqual(
self, first, second, tol=None, rel=None, msg=None
):
"""Test passes if ``first`` and ``second`` are approximately equal.
This test passes if ``first`` and ``second`` are equal to
within ``tol``, an absolute error, or ``rel``, a relative error.
If either ``tol`` or ``rel`` are None or not given, they default to
test attributes of the same name (by default, 0).
The objects may be either numbers, or sequences of numbers. Sequences
are tested element-by-element.
>>> class MyTest(NumericTestCase):
... def test_number(self):
... x = 1.0/6
... y = sum([x]*6)
... self.assertApproxEqual(y, 1.0, tol=1e-15)
... def test_sequence(self):
... a = [1.001, 1.001e-10, 1.001e10]
... b = [1.0, 1e-10, 1e10]
... self.assertApproxEqual(a, b, rel=1e-3)
...
>>> import unittest
>>> from io import StringIO # Suppress test runner output.
>>> suite = unittest.TestLoader().loadTestsFromTestCase(MyTest)
>>> unittest.TextTestRunner(stream=StringIO()).run(suite)
<unittest.runner.TextTestResult run=2 errors=0 failures=0>
"""
if tol is None:
tol = self.tol
if rel is None:
rel = self.rel
if (
isinstance(first, collections.Sequence) and
isinstance(second, collections.Sequence)
):
check = self._check_approx_seq
else:
check = self._check_approx_num
check(first, second, tol, rel, msg)
def _check_approx_seq(self, first, second, tol, rel, msg):
if len(first) != len(second):
standardMsg = (
"sequences differ in length: %d items != %d items"
% (len(first), len(second))
)
msg = self._formatMessage(msg, standardMsg)
raise self.failureException(msg)
for i, (a,e) in enumerate(zip(first, second)):
self._check_approx_num(a, e, tol, rel, msg, i)
def _check_approx_num(self, first, second, tol, rel, msg, idx=None):
if approx_equal(first, second, tol, rel):
# Test passes. Return early, we are done.
return None
# Otherwise we failed.
standardMsg = self._make_std_err_msg(first, second, tol, rel, idx)
msg = self._formatMessage(msg, standardMsg)
raise self.failureException(msg)
@staticmethod
def _make_std_err_msg(first, second, tol, rel, idx):
# Create the standard error message for approx_equal failures.
assert first != second
template = (
' %r != %r\n'
' values differ by more than tol=%r and rel=%r\n'
' -> absolute error = %r\n'
' -> relative error = %r'
)
if idx is not None:
header = 'numeric sequences first differ at index %d.\n' % idx
template = header + template
# Calculate actual errors:
abs_err, rel_err = _calc_errors(first, second)
return template % (first, second, tol, rel, abs_err, rel_err)
# ========================
# === Test the helpers ===
# ========================
# --- Tests for approx_equal ---
class ApproxEqualSymmetryTest(unittest.TestCase):
# Test symmetry of approx_equal.
def test_relative_symmetry(self):
# Check that approx_equal treats relative error symmetrically.
# (a-b)/a is usually not equal to (a-b)/b. Ensure that this
# doesn't matter.
#
# Note: the reason for this test is that an early version
# of approx_equal was not symmetric. A relative error test
# would pass, or fail, depending on which value was passed
# as the first argument.
#
args1 = [2456, 37.8, -12.45, Decimal('2.54'), Fraction(17, 54)]
args2 = [2459, 37.2, -12.41, Decimal('2.59'), Fraction(15, 54)]
assert len(args1) == len(args2)
for a, b in zip(args1, args2):
self.do_relative_symmetry(a, b)
def do_relative_symmetry(self, a, b):
a, b = min(a, b), max(a, b)
assert a < b
delta = b - a # The absolute difference between the values.
rel_err1, rel_err2 = abs(delta/a), abs(delta/b)
# Choose an error margin halfway between the two.
rel = (rel_err1 + rel_err2)/2
# Now see that values a and b compare approx equal regardless of
# which is given first.
self.assertTrue(approx_equal(a, b, tol=0, rel=rel))
self.assertTrue(approx_equal(b, a, tol=0, rel=rel))
def test_symmetry(self):
# Test that approx_equal(a, b) == approx_equal(b, a)
args = [-23, -2, 5, 107, 93568]
delta = 2
for a in args:
for type_ in (int, float, Decimal, Fraction):
x = type_(a)*100
y = x + delta
r = abs(delta/max(x, y))
# There are five cases to check:
# 1) actual error <= tol, <= rel
self.do_symmetry_test(x, y, tol=delta, rel=r)
self.do_symmetry_test(x, y, tol=delta+1, rel=2*r)
# 2) actual error > tol, > rel
self.do_symmetry_test(x, y, tol=delta-1, rel=r/2)
# 3) actual error <= tol, > rel
self.do_symmetry_test(x, y, tol=delta, rel=r/2)
# 4) actual error > tol, <= rel
self.do_symmetry_test(x, y, tol=delta-1, rel=r)
self.do_symmetry_test(x, y, tol=delta-1, rel=2*r)
# 5) exact equality test
self.do_symmetry_test(x, x, tol=0, rel=0)
self.do_symmetry_test(x, y, tol=0, rel=0)
def do_symmetry_test(self, a, b, tol, rel):
template = "approx_equal comparisons don't match for %r"
flag1 = approx_equal(a, b, tol, rel)
flag2 = approx_equal(b, a, tol, rel)
self.assertEqual(flag1, flag2, template.format((a, b, tol, rel)))
class ApproxEqualExactTest(unittest.TestCase):
# Test the approx_equal function with exactly equal values.
# Equal values should compare as approximately equal.
# Test cases for exactly equal values, which should compare approx
# equal regardless of the error tolerances given.
def do_exactly_equal_test(self, x, tol, rel):
result = approx_equal(x, x, tol=tol, rel=rel)
self.assertTrue(result, 'equality failure for x=%r' % x)
result = approx_equal(-x, -x, tol=tol, rel=rel)
self.assertTrue(result, 'equality failure for x=%r' % -x)
def test_exactly_equal_ints(self):
# Test that equal int values are exactly equal.
for n in [42, 19740, 14974, 230, 1795, 700245, 36587]:
self.do_exactly_equal_test(n, 0, 0)
def test_exactly_equal_floats(self):
# Test that equal float values are exactly equal.
for x in [0.42, 1.9740, 1497.4, 23.0, 179.5, 70.0245, 36.587]:
self.do_exactly_equal_test(x, 0, 0)
def test_exactly_equal_fractions(self):
# Test that equal Fraction values are exactly equal.
F = Fraction
for f in [F(1, 2), F(0), F(5, 3), F(9, 7), F(35, 36), F(3, 7)]:
self.do_exactly_equal_test(f, 0, 0)
def test_exactly_equal_decimals(self):
# Test that equal Decimal values are exactly equal.
D = Decimal
for d in map(D, "8.2 31.274 912.04 16.745 1.2047".split()):
self.do_exactly_equal_test(d, 0, 0)
def test_exactly_equal_absolute(self):
# Test that equal values are exactly equal with an absolute error.
for n in [16, 1013, 1372, 1198, 971, 4]:
# Test as ints.
self.do_exactly_equal_test(n, 0.01, 0)
# Test as floats.
self.do_exactly_equal_test(n/10, 0.01, 0)
# Test as Fractions.
f = Fraction(n, 1234)
self.do_exactly_equal_test(f, 0.01, 0)
def test_exactly_equal_absolute_decimals(self):
# Test equal Decimal values are exactly equal with an absolute error.
self.do_exactly_equal_test(Decimal("3.571"), Decimal("0.01"), 0)
self.do_exactly_equal_test(-Decimal("81.3971"), Decimal("0.01"), 0)
def test_exactly_equal_relative(self):
# Test that equal values are exactly equal with a relative error.
for x in [8347, 101.3, -7910.28, Fraction(5, 21)]:
self.do_exactly_equal_test(x, 0, 0.01)
self.do_exactly_equal_test(Decimal("11.68"), 0, Decimal("0.01"))
def test_exactly_equal_both(self):
# Test that equal values are equal when both tol and rel are given.
for x in [41017, 16.742, -813.02, Fraction(3, 8)]:
self.do_exactly_equal_test(x, 0.1, 0.01)
D = Decimal
self.do_exactly_equal_test(D("7.2"), D("0.1"), D("0.01"))
class ApproxEqualUnequalTest(unittest.TestCase):
# Unequal values should compare unequal with zero error tolerances.
# Test cases for unequal values, with exact equality test.
def do_exactly_unequal_test(self, x):
for a in (x, -x):
result = approx_equal(a, a+1, tol=0, rel=0)
self.assertFalse(result, 'inequality failure for x=%r' % a)
def test_exactly_unequal_ints(self):
# Test unequal int values are unequal with zero error tolerance.
for n in [951, 572305, 478, 917, 17240]:
self.do_exactly_unequal_test(n)
def test_exactly_unequal_floats(self):
# Test unequal float values are unequal with zero error tolerance.
for x in [9.51, 5723.05, 47.8, 9.17, 17.24]:
self.do_exactly_unequal_test(x)
def test_exactly_unequal_fractions(self):
# Test that unequal Fractions are unequal with zero error tolerance.
F = Fraction
for f in [F(1, 5), F(7, 9), F(12, 11), F(101, 99023)]:
self.do_exactly_unequal_test(f)
def test_exactly_unequal_decimals(self):
# Test that unequal Decimals are unequal with zero error tolerance.
for d in map(Decimal, "3.1415 298.12 3.47 18.996 0.00245".split()):
self.do_exactly_unequal_test(d)
class ApproxEqualInexactTest(unittest.TestCase):
# Inexact test cases for approx_error.
# Test cases when comparing two values that are not exactly equal.
# === Absolute error tests ===
def do_approx_equal_abs_test(self, x, delta):
template = "Test failure for x={!r}, y={!r}"
for y in (x + delta, x - delta):
msg = template.format(x, y)
self.assertTrue(approx_equal(x, y, tol=2*delta, rel=0), msg)
self.assertFalse(approx_equal(x, y, tol=delta/2, rel=0), msg)
def test_approx_equal_absolute_ints(self):
# Test approximate equality of ints with an absolute error.
for n in [-10737, -1975, -7, -2, 0, 1, 9, 37, 423, 9874, 23789110]:
self.do_approx_equal_abs_test(n, 10)
self.do_approx_equal_abs_test(n, 2)
def test_approx_equal_absolute_floats(self):
# Test approximate equality of floats with an absolute error.
for x in [-284.126, -97.1, -3.4, -2.15, 0.5, 1.0, 7.8, 4.23, 3817.4]:
self.do_approx_equal_abs_test(x, 1.5)
self.do_approx_equal_abs_test(x, 0.01)
self.do_approx_equal_abs_test(x, 0.0001)
def test_approx_equal_absolute_fractions(self):
# Test approximate equality of Fractions with an absolute error.
delta = Fraction(1, 29)
numerators = [-84, -15, -2, -1, 0, 1, 5, 17, 23, 34, 71]
for f in (Fraction(n, 29) for n in numerators):
self.do_approx_equal_abs_test(f, delta)
self.do_approx_equal_abs_test(f, float(delta))
def test_approx_equal_absolute_decimals(self):
# Test approximate equality of Decimals with an absolute error.
delta = Decimal("0.01")
for d in map(Decimal, "1.0 3.5 36.08 61.79 7912.3648".split()):
self.do_approx_equal_abs_test(d, delta)
self.do_approx_equal_abs_test(-d, delta)
def test_cross_zero(self):
# Test for the case of the two values having opposite signs.
self.assertTrue(approx_equal(1e-5, -1e-5, tol=1e-4, rel=0))
# === Relative error tests ===
def do_approx_equal_rel_test(self, x, delta):
template = "Test failure for x={!r}, y={!r}"
for y in (x*(1+delta), x*(1-delta)):
msg = template.format(x, y)
self.assertTrue(approx_equal(x, y, tol=0, rel=2*delta), msg)
self.assertFalse(approx_equal(x, y, tol=0, rel=delta/2), msg)
def test_approx_equal_relative_ints(self):
# Test approximate equality of ints with a relative error.
self.assertTrue(approx_equal(64, 47, tol=0, rel=0.36))
self.assertTrue(approx_equal(64, 47, tol=0, rel=0.37))
# ---
self.assertTrue(approx_equal(449, 512, tol=0, rel=0.125))
self.assertTrue(approx_equal(448, 512, tol=0, rel=0.125))
self.assertFalse(approx_equal(447, 512, tol=0, rel=0.125))
def test_approx_equal_relative_floats(self):
# Test approximate equality of floats with a relative error.
for x in [-178.34, -0.1, 0.1, 1.0, 36.97, 2847.136, 9145.074]:
self.do_approx_equal_rel_test(x, 0.02)
self.do_approx_equal_rel_test(x, 0.0001)
def test_approx_equal_relative_fractions(self):
# Test approximate equality of Fractions with a relative error.
F = Fraction
delta = Fraction(3, 8)
for f in [F(3, 84), F(17, 30), F(49, 50), F(92, 85)]:
for d in (delta, float(delta)):
self.do_approx_equal_rel_test(f, d)
self.do_approx_equal_rel_test(-f, d)
def test_approx_equal_relative_decimals(self):
# Test approximate equality of Decimals with a relative error.
for d in map(Decimal, "0.02 1.0 5.7 13.67 94.138 91027.9321".split()):
self.do_approx_equal_rel_test(d, Decimal("0.001"))
self.do_approx_equal_rel_test(-d, Decimal("0.05"))
# === Both absolute and relative error tests ===
# There are four cases to consider:
# 1) actual error <= both absolute and relative error
# 2) actual error <= absolute error but > relative error
# 3) actual error <= relative error but > absolute error
# 4) actual error > both absolute and relative error
def do_check_both(self, a, b, tol, rel, tol_flag, rel_flag):
check = self.assertTrue if tol_flag else self.assertFalse
check(approx_equal(a, b, tol=tol, rel=0))
check = self.assertTrue if rel_flag else self.assertFalse
check(approx_equal(a, b, tol=0, rel=rel))
check = self.assertTrue if (tol_flag or rel_flag) else self.assertFalse
check(approx_equal(a, b, tol=tol, rel=rel))
def test_approx_equal_both1(self):
# Test actual error <= both absolute and relative error.
self.do_check_both(7.955, 7.952, 0.004, 3.8e-4, True, True)
self.do_check_both(-7.387, -7.386, 0.002, 0.0002, True, True)
def test_approx_equal_both2(self):
# Test actual error <= absolute error but > relative error.
self.do_check_both(7.955, 7.952, 0.004, 3.7e-4, True, False)
def test_approx_equal_both3(self):
# Test actual error <= relative error but > absolute error.
self.do_check_both(7.955, 7.952, 0.001, 3.8e-4, False, True)
def test_approx_equal_both4(self):
# Test actual error > both absolute and relative error.
self.do_check_both(2.78, 2.75, 0.01, 0.001, False, False)
self.do_check_both(971.44, 971.47, 0.02, 3e-5, False, False)
class ApproxEqualSpecialsTest(unittest.TestCase):
# Test approx_equal with NANs and INFs and zeroes.
def test_inf(self):
for type_ in (float, Decimal):
inf = type_('inf')
self.assertTrue(approx_equal(inf, inf))
self.assertTrue(approx_equal(inf, inf, 0, 0))
self.assertTrue(approx_equal(inf, inf, 1, 0.01))
self.assertTrue(approx_equal(-inf, -inf))
self.assertFalse(approx_equal(inf, -inf))
self.assertFalse(approx_equal(inf, 1000))
def test_nan(self):
for type_ in (float, Decimal):
nan = type_('nan')
for other in (nan, type_('inf'), 1000):
self.assertFalse(approx_equal(nan, other))
def test_float_zeroes(self):
nzero = math.copysign(0.0, -1)
self.assertTrue(approx_equal(nzero, 0.0, tol=0.1, rel=0.1))
def test_decimal_zeroes(self):
nzero = Decimal("-0.0")
self.assertTrue(approx_equal(nzero, Decimal(0), tol=0.1, rel=0.1))
class TestApproxEqualErrors(unittest.TestCase):
# Test error conditions of approx_equal.
def test_bad_tol(self):
# Test negative tol raises.
self.assertRaises(ValueError, approx_equal, 100, 100, -1, 0.1)
def test_bad_rel(self):
# Test negative rel raises.
self.assertRaises(ValueError, approx_equal, 100, 100, 1, -0.1)
# --- Tests for NumericTestCase ---
# The formatting routine that generates the error messages is complex enough
# that it too needs testing.
class TestNumericTestCase(unittest.TestCase):
# The exact wording of NumericTestCase error messages is *not* guaranteed,
# but we need to give them some sort of test to ensure that they are
# generated correctly. As a compromise, we look for specific substrings
# that are expected to be found even if the overall error message changes.
def do_test(self, args):
actual_msg = NumericTestCase._make_std_err_msg(*args)
expected = self.generate_substrings(*args)
for substring in expected:
self.assertIn(substring, actual_msg)
def test_numerictestcase_is_testcase(self):
# Ensure that NumericTestCase actually is a TestCase.
self.assertTrue(issubclass(NumericTestCase, unittest.TestCase))
def test_error_msg_numeric(self):
# Test the error message generated for numeric comparisons.
args = (2.5, 4.0, 0.5, 0.25, None)
self.do_test(args)
def test_error_msg_sequence(self):
# Test the error message generated for sequence comparisons.
args = (3.75, 8.25, 1.25, 0.5, 7)
self.do_test(args)
def generate_substrings(self, first, second, tol, rel, idx):
"""Return substrings we expect to see in error messages."""
abs_err, rel_err = _calc_errors(first, second)
substrings = [
'tol=%r' % tol,
'rel=%r' % rel,
'absolute error = %r' % abs_err,
'relative error = %r' % rel_err,
]
if idx is not None:
substrings.append('differ at index %d' % idx)
return substrings
# =======================================
# === Tests for the statistics module ===
# =======================================
class GlobalsTest(unittest.TestCase):
module = statistics
expected_metadata = ["__doc__", "__all__"]
def test_meta(self):
# Test for the existence of metadata.
for meta in self.expected_metadata:
self.assertTrue(hasattr(self.module, meta),
"%s not present" % meta)
def test_check_all(self):
# Check everything in __all__ exists and is public.
module = self.module
for name in module.__all__:
# No private names in __all__:
self.assertFalse(name.startswith("_"),
'private name "%s" in __all__' % name)
# And anything in __all__ must exist:
self.assertTrue(hasattr(module, name),
'missing name "%s" in __all__' % name)
class DocTests(unittest.TestCase):
@unittest.skipIf(sys.flags.optimize >= 2,
"Docstrings are omitted with -OO and above")
def test_doc_tests(self):
failed, tried = doctest.testmod(statistics)
self.assertGreater(tried, 0)
self.assertEqual(failed, 0)
class StatisticsErrorTest(unittest.TestCase):
def test_has_exception(self):
errmsg = (
"Expected StatisticsError to be a ValueError, but got a"
" subclass of %r instead."
)
self.assertTrue(hasattr(statistics, 'StatisticsError'))
self.assertTrue(
issubclass(statistics.StatisticsError, ValueError),
errmsg % statistics.StatisticsError.__base__
)
# === Tests for private utility functions ===
class ExactRatioTest(unittest.TestCase):
# Test _exact_ratio utility.
def test_int(self):
for i in (-20, -3, 0, 5, 99, 10**20):
self.assertEqual(statistics._exact_ratio(i), (i, 1))
def test_fraction(self):
numerators = (-5, 1, 12, 38)
for n in numerators:
f = Fraction(n, 37)
self.assertEqual(statistics._exact_ratio(f), (n, 37))
def test_float(self):
self.assertEqual(statistics._exact_ratio(0.125), (1, 8))
self.assertEqual(statistics._exact_ratio(1.125), (9, 8))
data = [random.uniform(-100, 100) for _ in range(100)]
for x in data:
num, den = statistics._exact_ratio(x)
self.assertEqual(x, num/den)
def test_decimal(self):
D = Decimal
_exact_ratio = statistics._exact_ratio
self.assertEqual(_exact_ratio(D("0.125")), (125, 1000))
self.assertEqual(_exact_ratio(D("12.345")), (12345, 1000))
self.assertEqual(_exact_ratio(D("-1.98")), (-198, 100))
class DecimalToRatioTest(unittest.TestCase):
# Test _decimal_to_ratio private function.
def testSpecialsRaise(self):
# Test that NANs and INFs raise ValueError.
# Non-special values are covered by _exact_ratio above.
for d in (Decimal('NAN'), Decimal('sNAN'), Decimal('INF')):
self.assertRaises(ValueError, statistics._decimal_to_ratio, d)
def test_sign(self):
# Test sign is calculated correctly.
numbers = [Decimal("9.8765e12"), Decimal("9.8765e-12")]
for d in numbers:
# First test positive decimals.
assert d > 0
num, den = statistics._decimal_to_ratio(d)
self.assertGreaterEqual(num, 0)
self.assertGreater(den, 0)
# Then test negative decimals.
num, den = statistics._decimal_to_ratio(-d)
self.assertLessEqual(num, 0)
self.assertGreater(den, 0)
def test_negative_exponent(self):
# Test result when the exponent is negative.
t = statistics._decimal_to_ratio(Decimal("0.1234"))
self.assertEqual(t, (1234, 10000))
def test_positive_exponent(self):
# Test results when the exponent is positive.
t = statistics._decimal_to_ratio(Decimal("1.234e7"))
self.assertEqual(t, (12340000, 1))
def test_regression_20536(self):
# Regression test for issue 20536.
# See http://bugs.python.org/issue20536
t = statistics._decimal_to_ratio(Decimal("1e2"))
self.assertEqual(t, (100, 1))
t = statistics._decimal_to_ratio(Decimal("1.47e5"))
self.assertEqual(t, (147000, 1))
class CheckTypeTest(unittest.TestCase):
# Test _check_type private function.
def test_allowed(self):
# Test that a type which should be allowed is allowed.
allowed = set([int, float])
statistics._check_type(int, allowed)
statistics._check_type(float, allowed)
def test_not_allowed(self):
# Test that a type which should not be allowed raises.
allowed = set([int, float])
self.assertRaises(TypeError, statistics._check_type, Decimal, allowed)
def test_add_to_allowed(self):
# Test that a second type will be added to the allowed set.
allowed = set([int])
statistics._check_type(float, allowed)
self.assertEqual(allowed, set([int, float]))
# === Tests for public functions ===
class UnivariateCommonMixin:
# Common tests for most univariate functions that take a data argument.
def test_no_args(self):
# Fail if given no arguments.
self.assertRaises(TypeError, self.func)
def test_empty_data(self):
# Fail when the data argument (first argument) is empty.
for empty in ([], (), iter([])):
self.assertRaises(statistics.StatisticsError, self.func, empty)
def prepare_data(self):
"""Return int data for various tests."""
data = list(range(10))
while data == sorted(data):
random.shuffle(data)
return data
def test_no_inplace_modifications(self):
# Test that the function does not modify its input data.
data = self.prepare_data()
assert len(data) != 1 # Necessary to avoid infinite loop.
assert data != sorted(data)
saved = data[:]
assert data is not saved
_ = self.func(data)
self.assertListEqual(data, saved, "data has been modified")
def test_order_doesnt_matter(self):
# Test that the order of data points doesn't change the result.
# CAUTION: due to floating point rounding errors, the result actually
# may depend on the order. Consider this test representing an ideal.
# To avoid this test failing, only test with exact values such as ints
# or Fractions.
data = [1, 2, 3, 3, 3, 4, 5, 6]*100
expected = self.func(data)
random.shuffle(data)
actual = self.func(data)
self.assertEqual(expected, actual)
def test_type_of_data_collection(self):
# Test that the type of iterable data doesn't effect the result.
class MyList(list):
pass
class MyTuple(tuple):
pass
def generator(data):
return (obj for obj in data)
data = self.prepare_data()
expected = self.func(data)
for kind in (list, tuple, iter, MyList, MyTuple, generator):
result = self.func(kind(data))
self.assertEqual(result, expected)
def test_range_data(self):
# Test that functions work with range objects.
data = range(20, 50, 3)
expected = self.func(list(data))
self.assertEqual(self.func(data), expected)
def test_bad_arg_types(self):
# Test that function raises when given data of the wrong type.
# Don't roll the following into a loop like this:
# for bad in list_of_bad:
# self.check_for_type_error(bad)
#
# Since assertRaises doesn't show the arguments that caused the test
# failure, it is very difficult to debug these test failures when the
# following are in a loop.
self.check_for_type_error(None)
self.check_for_type_error(23)
self.check_for_type_error(42.0)
self.check_for_type_error(object())
def check_for_type_error(self, *args):
self.assertRaises(TypeError, self.func, *args)
def test_type_of_data_element(self):
# Check the type of data elements doesn't affect the numeric result.
# This is a weaker test than UnivariateTypeMixin.testTypesConserved,
# because it checks the numeric result by equality, but not by type.
class MyFloat(float):
def __truediv__(self, other):
return type(self)(super().__truediv__(other))
def __add__(self, other):
return type(self)(super().__add__(other))
__radd__ = __add__
raw = self.prepare_data()
expected = self.func(raw)
for kind in (float, MyFloat, Decimal, Fraction):
data = [kind(x) for x in raw]
result = type(expected)(self.func(data))
self.assertEqual(result, expected)
class UnivariateTypeMixin:
"""Mixin class for type-conserving functions.
This mixin class holds test(s) for functions which conserve the type of
individual data points. E.g. the mean of a list of Fractions should itself
be a Fraction.
Not all tests to do with types need go in this class. Only those that
rely on the function returning the same type as its input data.
"""
def test_types_conserved(self):
# Test that functions keeps the same type as their data points.
# (Excludes mixed data types.) This only tests the type of the return
# result, not the value.
class MyFloat(float):
def __truediv__(self, other):
return type(self)(super().__truediv__(other))
def __sub__(self, other):
return type(self)(super().__sub__(other))
def __rsub__(self, other):
return type(self)(super().__rsub__(other))
def __pow__(self, other):
return type(self)(super().__pow__(other))
def __add__(self, other):
return type(self)(super().__add__(other))
__radd__ = __add__
data = self.prepare_data()
for kind in (float, Decimal, Fraction, MyFloat):
d = [kind(x) for x in data]
result = self.func(d)
self.assertIs(type(result), kind)
class TestSum(NumericTestCase, UnivariateCommonMixin, UnivariateTypeMixin):
# Test cases for statistics._sum() function.
def setUp(self):
self.func = statistics._sum
def test_empty_data(self):
# Override test for empty data.
for data in ([], (), iter([])):
self.assertEqual(self.func(data), 0)
self.assertEqual(self.func(data, 23), 23)
self.assertEqual(self.func(data, 2.3), 2.3)
def test_ints(self):
self.assertEqual(self.func([1, 5, 3, -4, -8, 20, 42, 1]), 60)
self.assertEqual(self.func([4, 2, 3, -8, 7], 1000), 1008)
def test_floats(self):
self.assertEqual(self.func([0.25]*20), 5.0)
self.assertEqual(self.func([0.125, 0.25, 0.5, 0.75], 1.5), 3.125)
def test_fractions(self):
F = Fraction
self.assertEqual(self.func([Fraction(1, 1000)]*500), Fraction(1, 2))
def test_decimals(self):
D = Decimal
data = [D("0.001"), D("5.246"), D("1.702"), D("-0.025"),
D("3.974"), D("2.328"), D("4.617"), D("2.843"),
]
self.assertEqual(self.func(data), Decimal("20.686"))
def test_compare_with_math_fsum(self):
# Compare with the math.fsum function.
# Ideally we ought to get the exact same result, but sometimes
# we differ by a very slight amount :-(
data = [random.uniform(-100, 1000) for _ in range(1000)]
self.assertApproxEqual(self.func(data), math.fsum(data), rel=2e-16)
def test_start_argument(self):
# Test that the optional start argument works correctly.
data = [random.uniform(1, 1000) for _ in range(100)]
t = self.func(data)
self.assertEqual(t+42, self.func(data, 42))
self.assertEqual(t-23, self.func(data, -23))
self.assertEqual(t+1e20, self.func(data, 1e20))
def test_strings_fail(self):
# Sum of strings should fail.
self.assertRaises(TypeError, self.func, [1, 2, 3], '999')
self.assertRaises(TypeError, self.func, [1, 2, 3, '999'])
def test_bytes_fail(self):
# Sum of bytes should fail.
self.assertRaises(TypeError, self.func, [1, 2, 3], b'999')
self.assertRaises(TypeError, self.func, [1, 2, 3, b'999'])
def test_mixed_sum(self):
# Mixed input types are not (currently) allowed.
# Check that mixed data types fail.
self.assertRaises(TypeError, self.func, [1, 2.0, Fraction(1, 2)])
# And so does mixed start argument.
self.assertRaises(TypeError, self.func, [1, 2.0], Decimal(1))
class SumTortureTest(NumericTestCase):
def test_torture(self):
# Tim Peters' torture test for sum, and variants of same.
self.assertEqual(statistics._sum([1, 1e100, 1, -1e100]*10000), 20000.0)
self.assertEqual(statistics._sum([1e100, 1, 1, -1e100]*10000), 20000.0)
self.assertApproxEqual(
statistics._sum([1e-100, 1, 1e-100, -1]*10000), 2.0e-96, rel=5e-16
)
class SumSpecialValues(NumericTestCase):
# Test that sum works correctly with IEEE-754 special values.
def test_nan(self):
for type_ in (float, Decimal):
nan = type_('nan')
result = statistics._sum([1, nan, 2])
self.assertIs(type(result), type_)
self.assertTrue(math.isnan(result))
def check_infinity(self, x, inf):
"""Check x is an infinity of the same type and sign as inf."""
self.assertTrue(math.isinf(x))
self.assertIs(type(x), type(inf))
self.assertEqual(x > 0, inf > 0)
assert x == inf
def do_test_inf(self, inf):
# Adding a single infinity gives infinity.
result = statistics._sum([1, 2, inf, 3])
self.check_infinity(result, inf)
# Adding two infinities of the same sign also gives infinity.
result = statistics._sum([1, 2, inf, 3, inf, 4])
self.check_infinity(result, inf)
def test_float_inf(self):
inf = float('inf')
for sign in (+1, -1):
self.do_test_inf(sign*inf)
def test_decimal_inf(self):
inf = Decimal('inf')
for sign in (+1, -1):
self.do_test_inf(sign*inf)
def test_float_mismatched_infs(self):
# Test that adding two infinities of opposite sign gives a NAN.
inf = float('inf')
result = statistics._sum([1, 2, inf, 3, -inf, 4])
self.assertTrue(math.isnan(result))
def test_decimal_extendedcontext_mismatched_infs_to_nan(self):
# Test adding Decimal INFs with opposite sign returns NAN.
inf = Decimal('inf')
data = [1, 2, inf, 3, -inf, 4]
with decimal.localcontext(decimal.ExtendedContext):
self.assertTrue(math.isnan(statistics._sum(data)))
def test_decimal_basiccontext_mismatched_infs_to_nan(self):
# Test adding Decimal INFs with opposite sign raises InvalidOperation.
inf = Decimal('inf')
data = [1, 2, inf, 3, -inf, 4]
with decimal.localcontext(decimal.BasicContext):
self.assertRaises(decimal.InvalidOperation, statistics._sum, data)
def test_decimal_snan_raises(self):
# Adding sNAN should raise InvalidOperation.
sNAN = Decimal('sNAN')
data = [1, sNAN, 2]
self.assertRaises(decimal.InvalidOperation, statistics._sum, data)
# === Tests for averages ===
class AverageMixin(UnivariateCommonMixin):
# Mixin class holding common tests for averages.
def test_single_value(self):
# Average of a single value is the value itself.
for x in (23, 42.5, 1.3e15, Fraction(15, 19), Decimal('0.28')):
self.assertEqual(self.func([x]), x)
def test_repeated_single_value(self):
# The average of a single repeated value is the value itself.
for x in (3.5, 17, 2.5e15, Fraction(61, 67), Decimal('4.9712')):
for count in (2, 5, 10, 20):
data = [x]*count
self.assertEqual(self.func(data), x)
class TestMean(NumericTestCase, AverageMixin, UnivariateTypeMixin):
def setUp(self):
self.func = statistics.mean
def test_torture_pep(self):
# "Torture Test" from PEP-450.
self.assertEqual(self.func([1e100, 1, 3, -1e100]), 1)
def test_ints(self):
# Test mean with ints.
data = [0, 1, 2, 3, 3, 3, 4, 5, 5, 6, 7, 7, 7, 7, 8, 9]
random.shuffle(data)
self.assertEqual(self.func(data), 4.8125)
def test_floats(self):
# Test mean with floats.
data = [17.25, 19.75, 20.0, 21.5, 21.75, 23.25, 25.125, 27.5]
random.shuffle(data)
self.assertEqual(self.func(data), 22.015625)
def test_decimals(self):
# Test mean with ints.
D = Decimal
data = [D("1.634"), D("2.517"), D("3.912"), D("4.072"), D("5.813")]
random.shuffle(data)
self.assertEqual(self.func(data), D("3.5896"))
def test_fractions(self):
# Test mean with Fractions.
F = Fraction
data = [F(1, 2), F(2, 3), F(3, 4), F(4, 5), F(5, 6), F(6, 7), F(7, 8)]
random.shuffle(data)
self.assertEqual(self.func(data), F(1479, 1960))
def test_inf(self):
# Test mean with infinities.
raw = [1, 3, 5, 7, 9] # Use only ints, to avoid TypeError later.
for kind in (float, Decimal):
for sign in (1, -1):
inf = kind("inf")*sign
data = raw + [inf]
result = self.func(data)
self.assertTrue(math.isinf(result))
self.assertEqual(result, inf)
def test_mismatched_infs(self):
# Test mean with infinities of opposite sign.
data = [2, 4, 6, float('inf'), 1, 3, 5, float('-inf')]
result = self.func(data)
self.assertTrue(math.isnan(result))
def test_nan(self):
# Test mean with NANs.
raw = [1, 3, 5, 7, 9] # Use only ints, to avoid TypeError later.
for kind in (float, Decimal):
inf = kind("nan")
data = raw + [inf]
result = self.func(data)
self.assertTrue(math.isnan(result))
def test_big_data(self):
# Test adding a large constant to every data point.
c = 1e9
data = [3.4, 4.5, 4.9, 6.7, 6.8, 7.2, 8.0, 8.1, 9.4]
expected = self.func(data) + c
assert expected != c
result = self.func([x+c for x in data])
self.assertEqual(result, expected)
def test_doubled_data(self):
# Mean of [a,b,c...z] should be same as for [a,a,b,b,c,c...z,z].
data = [random.uniform(-3, 5) for _ in range(1000)]
expected = self.func(data)
actual = self.func(data*2)
self.assertApproxEqual(actual, expected)
def test_regression_20561(self):
# Regression test for issue 20561.
# See http://bugs.python.org/issue20561
d = Decimal('1e4')
self.assertEqual(statistics.mean([d]), d)
class TestMedian(NumericTestCase, AverageMixin):
# Common tests for median and all median.* functions.
def setUp(self):
self.func = statistics.median
def prepare_data(self):
"""Overload method from UnivariateCommonMixin."""
data = super().prepare_data()
if len(data)%2 != 1:
data.append(2)
return data
def test_even_ints(self):
# Test median with an even number of int data points.
data = [1, 2, 3, 4, 5, 6]
assert len(data)%2 == 0
self.assertEqual(self.func(data), 3.5)
def test_odd_ints(self):
# Test median with an odd number of int data points.
data = [1, 2, 3, 4, 5, 6, 9]
assert len(data)%2 == 1
self.assertEqual(self.func(data), 4)
def test_odd_fractions(self):
# Test median works with an odd number of Fractions.
F = Fraction
data = [F(1, 7), F(2, 7), F(3, 7), F(4, 7), F(5, 7)]
assert len(data)%2 == 1
random.shuffle(data)
self.assertEqual(self.func(data), F(3, 7))
def test_even_fractions(self):
# Test median works with an even number of Fractions.
F = Fraction
data = [F(1, 7), F(2, 7), F(3, 7), F(4, 7), F(5, 7), F(6, 7)]
assert len(data)%2 == 0
random.shuffle(data)
self.assertEqual(self.func(data), F(1, 2))
def test_odd_decimals(self):
# Test median works with an odd number of Decimals.
D = Decimal
data = [D('2.5'), D('3.1'), D('4.2'), D('5.7'), D('5.8')]
assert len(data)%2 == 1
random.shuffle(data)
self.assertEqual(self.func(data), D('4.2'))
def test_even_decimals(self):
# Test median works with an even number of Decimals.
D = Decimal
data = [D('1.2'), D('2.5'), D('3.1'), D('4.2'), D('5.7'), D('5.8')]
assert len(data)%2 == 0
random.shuffle(data)
self.assertEqual(self.func(data), D('3.65'))
class TestMedianDataType(NumericTestCase, UnivariateTypeMixin):
# Test conservation of data element type for median.
def setUp(self):
self.func = statistics.median
def prepare_data(self):
data = list(range(15))
assert len(data)%2 == 1
while data == sorted(data):
random.shuffle(data)
return data
class TestMedianLow(TestMedian, UnivariateTypeMixin):
def setUp(self):
self.func = statistics.median_low
def test_even_ints(self):
# Test median_low with an even number of ints.
data = [1, 2, 3, 4, 5, 6]
assert len(data)%2 == 0
self.assertEqual(self.func(data), 3)
def test_even_fractions(self):
# Test median_low works with an even number of Fractions.
F = Fraction
data = [F(1, 7), F(2, 7), F(3, 7), F(4, 7), F(5, 7), F(6, 7)]
assert len(data)%2 == 0
random.shuffle(data)
self.assertEqual(self.func(data), F(3, 7))
def test_even_decimals(self):
# Test median_low works with an even number of Decimals.
D = Decimal
data = [D('1.1'), D('2.2'), D('3.3'), D('4.4'), D('5.5'), D('6.6')]
assert len(data)%2 == 0
random.shuffle(data)
self.assertEqual(self.func(data), D('3.3'))
class TestMedianHigh(TestMedian, UnivariateTypeMixin):
def setUp(self):
self.func = statistics.median_high
def test_even_ints(self):
# Test median_high with an even number of ints.
data = [1, 2, 3, 4, 5, 6]
assert len(data)%2 == 0
self.assertEqual(self.func(data), 4)
def test_even_fractions(self):
# Test median_high works with an even number of Fractions.
F = Fraction
data = [F(1, 7), F(2, 7), F(3, 7), F(4, 7), F(5, 7), F(6, 7)]
assert len(data)%2 == 0
random.shuffle(data)
self.assertEqual(self.func(data), F(4, 7))
def test_even_decimals(self):
# Test median_high works with an even number of Decimals.
D = Decimal
data = [D('1.1'), D('2.2'), D('3.3'), D('4.4'), D('5.5'), D('6.6')]
assert len(data)%2 == 0
random.shuffle(data)
self.assertEqual(self.func(data), D('4.4'))
class TestMedianGrouped(TestMedian):
# Test median_grouped.
# Doesn't conserve data element types, so don't use TestMedianType.
def setUp(self):
self.func = statistics.median_grouped
def test_odd_number_repeated(self):
# Test median.grouped with repeated median values.
data = [12, 13, 14, 14, 14, 15, 15]
assert len(data)%2 == 1
self.assertEqual(self.func(data), 14)
#---
data = [12, 13, 14, 14, 14, 14, 15]
assert len(data)%2 == 1
self.assertEqual(self.func(data), 13.875)
#---
data = [5, 10, 10, 15, 20, 20, 20, 20, 25, 25, 30]
assert len(data)%2 == 1
self.assertEqual(self.func(data, 5), 19.375)
#---
data = [16, 18, 18, 18, 18, 20, 20, 20, 22, 22, 22, 24, 24, 26, 28]
assert len(data)%2 == 1
self.assertApproxEqual(self.func(data, 2), 20.66666667, tol=1e-8)
def test_even_number_repeated(self):
# Test median.grouped with repeated median values.
data = [5, 10, 10, 15, 20, 20, 20, 25, 25, 30]
assert len(data)%2 == 0
self.assertApproxEqual(self.func(data, 5), 19.16666667, tol=1e-8)
#---
data = [2, 3, 4, 4, 4, 5]
assert len(data)%2 == 0
self.assertApproxEqual(self.func(data), 3.83333333, tol=1e-8)
#---
data = [2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 6, 6]
assert len(data)%2 == 0
self.assertEqual(self.func(data), 4.5)
#---
data = [3, 4, 4, 4, 5, 5, 5, 5, 6, 6]
assert len(data)%2 == 0
self.assertEqual(self.func(data), 4.75)
def test_repeated_single_value(self):
# Override method from AverageMixin.
# Yet again, failure of median_grouped to conserve the data type
# causes me headaches :-(
for x in (5.3, 68, 4.3e17, Fraction(29, 101), Decimal('32.9714')):
for count in (2, 5, 10, 20):
data = [x]*count
self.assertEqual(self.func(data), float(x))
def test_odd_fractions(self):
# Test median_grouped works with an odd number of Fractions.
F = Fraction
data = [F(5, 4), F(9, 4), F(13, 4), F(13, 4), F(17, 4)]
assert len(data)%2 == 1
random.shuffle(data)
self.assertEqual(self.func(data), 3.0)
def test_even_fractions(self):
# Test median_grouped works with an even number of Fractions.
F = Fraction
data = [F(5, 4), F(9, 4), F(13, 4), F(13, 4), F(17, 4), F(17, 4)]
assert len(data)%2 == 0
random.shuffle(data)
self.assertEqual(self.func(data), 3.25)
def test_odd_decimals(self):
# Test median_grouped works with an odd number of Decimals.
D = Decimal
data = [D('5.5'), D('6.5'), D('6.5'), D('7.5'), D('8.5')]
assert len(data)%2 == 1
random.shuffle(data)
self.assertEqual(self.func(data), 6.75)
def test_even_decimals(self):
# Test median_grouped works with an even number of Decimals.
D = Decimal
data = [D('5.5'), D('5.5'), D('6.5'), D('6.5'), D('7.5'), D('8.5')]
assert len(data)%2 == 0
random.shuffle(data)
self.assertEqual(self.func(data), 6.5)
#---
data = [D('5.5'), D('5.5'), D('6.5'), D('7.5'), D('7.5'), D('8.5')]
assert len(data)%2 == 0
random.shuffle(data)
self.assertEqual(self.func(data), 7.0)
def test_interval(self):
# Test median_grouped with interval argument.
data = [2.25, 2.5, 2.5, 2.75, 2.75, 3.0, 3.0, 3.25, 3.5, 3.75]
self.assertEqual(self.func(data, 0.25), 2.875)
data = [2.25, 2.5, 2.5, 2.75, 2.75, 2.75, 3.0, 3.0, 3.25, 3.5, 3.75]
self.assertApproxEqual(self.func(data, 0.25), 2.83333333, tol=1e-8)
data = [220, 220, 240, 260, 260, 260, 260, 280, 280, 300, 320, 340]
self.assertEqual(self.func(data, 20), 265.0)
class TestMode(NumericTestCase, AverageMixin, UnivariateTypeMixin):
# Test cases for the discrete version of mode.
def setUp(self):
self.func = statistics.mode
def prepare_data(self):
"""Overload method from UnivariateCommonMixin."""
# Make sure test data has exactly one mode.
return [1, 1, 1, 1, 3, 4, 7, 9, 0, 8, 2]
def test_range_data(self):
# Override test from UnivariateCommonMixin.
data = range(20, 50, 3)
self.assertRaises(statistics.StatisticsError, self.func, data)
def test_nominal_data(self):
# Test mode with nominal data.
data = 'abcbdb'
self.assertEqual(self.func(data), 'b')
data = 'fe fi fo fum fi fi'.split()
self.assertEqual(self.func(data), 'fi')
def test_discrete_data(self):
# Test mode with discrete numeric data.
data = list(range(10))
for i in range(10):
d = data + [i]
random.shuffle(d)
self.assertEqual(self.func(d), i)
def test_bimodal_data(self):
# Test mode with bimodal data.
data = [1, 1, 2, 2, 2, 2, 3, 4, 5, 6, 6, 6, 6, 7, 8, 9, 9]
assert data.count(2) == data.count(6) == 4
# Check for an exception.
self.assertRaises(statistics.StatisticsError, self.func, data)
def test_unique_data_failure(self):
# Test mode exception when data points are all unique.
data = list(range(10))
self.assertRaises(statistics.StatisticsError, self.func, data)
def test_none_data(self):
# Test that mode raises TypeError if given None as data.
# This test is necessary because the implementation of mode uses
# collections.Counter, which accepts None and returns an empty dict.
self.assertRaises(TypeError, self.func, None)
def test_counter_data(self):
# Test that a Counter is treated like any other iterable.
data = collections.Counter([1, 1, 1, 2])
# Since the keys of the counter are treated as data points, not the
# counts, this should raise.
self.assertRaises(statistics.StatisticsError, self.func, data)
# === Tests for variances and standard deviations ===
class VarianceStdevMixin(UnivariateCommonMixin):
# Mixin class holding common tests for variance and std dev.
# Subclasses should inherit from this before NumericTestClass, in order
# to see the rel attribute below. See testShiftData for an explanation.
rel = 1e-12
def test_single_value(self):
# Deviation of a single value is zero.
for x in (11, 19.8, 4.6e14, Fraction(21, 34), Decimal('8.392')):
self.assertEqual(self.func([x]), 0)
def test_repeated_single_value(self):
# The deviation of a single repeated value is zero.
for x in (7.2, 49, 8.1e15, Fraction(3, 7), Decimal('62.4802')):
for count in (2, 3, 5, 15):
data = [x]*count
self.assertEqual(self.func(data), 0)
def test_domain_error_regression(self):
# Regression test for a domain error exception.
# (Thanks to Geremy Condra.)
data = [0.123456789012345]*10000
# All the items are identical, so variance should be exactly zero.
# We allow some small round-off error, but not much.
result = self.func(data)
self.assertApproxEqual(result, 0.0, tol=5e-17)
self.assertGreaterEqual(result, 0) # A negative result must fail.
def test_shift_data(self):
# Test that shifting the data by a constant amount does not affect
# the variance or stdev. Or at least not much.
# Due to rounding, this test should be considered an ideal. We allow
# some tolerance away from "no change at all" by setting tol and/or rel
# attributes. Subclasses may set tighter or looser error tolerances.
raw = [1.03, 1.27, 1.94, 2.04, 2.58, 3.14, 4.75, 4.98, 5.42, 6.78]
expected = self.func(raw)
# Don't set shift too high, the bigger it is, the more rounding error.
shift = 1e5
data = [x + shift for x in raw]
self.assertApproxEqual(self.func(data), expected)
def test_shift_data_exact(self):
# Like test_shift_data, but result is always exact.
raw = [1, 3, 3, 4, 5, 7, 9, 10, 11, 16]
assert all(x==int(x) for x in raw)
expected = self.func(raw)
shift = 10**9
data = [x + shift for x in raw]
self.assertEqual(self.func(data), expected)
def test_iter_list_same(self):
# Test that iter data and list data give the same result.
# This is an explicit test that iterators and lists are treated the
# same; justification for this test over and above the similar test
# in UnivariateCommonMixin is that an earlier design had variance and
# friends swap between one- and two-pass algorithms, which would
# sometimes give different results.
data = [random.uniform(-3, 8) for _ in range(1000)]
expected = self.func(data)
self.assertEqual(self.func(iter(data)), expected)
class TestPVariance(VarianceStdevMixin, NumericTestCase, UnivariateTypeMixin):
# Tests for population variance.
def setUp(self):
self.func = statistics.pvariance
def test_exact_uniform(self):
# Test the variance against an exact result for uniform data.
data = list(range(10000))
random.shuffle(data)
expected = (10000**2 - 1)/12 # Exact value.
self.assertEqual(self.func(data), expected)
def test_ints(self):
# Test population variance with int data.
data = [4, 7, 13, 16]
exact = 22.5
self.assertEqual(self.func(data), exact)
def test_fractions(self):
# Test population variance with Fraction data.
F = Fraction
data = [F(1, 4), F(1, 4), F(3, 4), F(7, 4)]
exact = F(3, 8)
result = self.func(data)
self.assertEqual(result, exact)
self.assertIsInstance(result, Fraction)
def test_decimals(self):
# Test population variance with Decimal data.
D = Decimal
data = [D("12.1"), D("12.2"), D("12.5"), D("12.9")]
exact = D('0.096875')
result = self.func(data)
self.assertEqual(result, exact)
self.assertIsInstance(result, Decimal)
class TestVariance(VarianceStdevMixin, NumericTestCase, UnivariateTypeMixin):
# Tests for sample variance.
def setUp(self):
self.func = statistics.variance
def test_single_value(self):
# Override method from VarianceStdevMixin.
for x in (35, 24.7, 8.2e15, Fraction(19, 30), Decimal('4.2084')):
self.assertRaises(statistics.StatisticsError, self.func, [x])
def test_ints(self):
# Test sample variance with int data.
data = [4, 7, 13, 16]
exact = 30
self.assertEqual(self.func(data), exact)
def test_fractions(self):
# Test sample variance with Fraction data.
F = Fraction
data = [F(1, 4), F(1, 4), F(3, 4), F(7, 4)]
exact = F(1, 2)
result = self.func(data)
self.assertEqual(result, exact)
self.assertIsInstance(result, Fraction)
def test_decimals(self):
# Test sample variance with Decimal data.
D = Decimal
data = [D(2), D(2), D(7), D(9)]
exact = 4*D('9.5')/D(3)
result = self.func(data)
self.assertEqual(result, exact)
self.assertIsInstance(result, Decimal)
class TestPStdev(VarianceStdevMixin, NumericTestCase):
# Tests for population standard deviation.
def setUp(self):
self.func = statistics.pstdev
def test_compare_to_variance(self):
# Test that stdev is, in fact, the square root of variance.
data = [random.uniform(-17, 24) for _ in range(1000)]
expected = math.sqrt(statistics.pvariance(data))
self.assertEqual(self.func(data), expected)
class TestStdev(VarianceStdevMixin, NumericTestCase):
# Tests for sample standard deviation.
def setUp(self):
self.func = statistics.stdev
def test_single_value(self):
# Override method from VarianceStdevMixin.
for x in (81, 203.74, 3.9e14, Fraction(5, 21), Decimal('35.719')):
self.assertRaises(statistics.StatisticsError, self.func, [x])
def test_compare_to_variance(self):
# Test that stdev is, in fact, the square root of variance.
data = [random.uniform(-2, 9) for _ in range(1000)]
expected = math.sqrt(statistics.variance(data))
self.assertEqual(self.func(data), expected)
# === Run tests ===
def load_tests(loader, tests, ignore):
"""Used for doctest/unittest integration."""
tests.addTests(doctest.DocTestSuite())
return tests
if __name__ == "__main__":
unittest.main()
|