/usr/include/relion-1.3/src/euler.h is in librelion-dev-common 1.3+dfsg-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 | /***************************************************************************
*
* Author: "Sjors H.W. Scheres"
* MRC Laboratory of Molecular Biology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* This complete copyright notice must be included in any revised version of the
* source code. Additional authorship citations may be added, but existing
* author citations must be preserved.
***************************************************************************/
/***************************************************************************
*
* Authors: Carlos Oscar S. Sorzano (coss@cnb.csic.es)
*
* Unidad de Bioinformatica of Centro Nacional de Biotecnologia , CSIC
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
* 02111-1307 USA
*
* All comments concerning this program package may be sent to the
* e-mail address 'xmipp@cnb.csic.es'
***************************************************************************/
#ifndef GEOMETRY_H
#define GEOMETRY_H
#include "src/multidim_array.h"
#include "src/transformations.h"
#ifndef FLT_EPSILON
#define FLT_EPSILON 1.19209e-07
#endif
/// @name Euler operations
/// @{
/** Euler angles --> "Euler" matrix
*
* This function returns the transformation matrix associated to the 3 given
* Euler angles (in degrees).
*
* As an implementation note you might like to know that this function calls
* always to Matrix2D::resize
*
* See http://xmipp.cnb.csic.es/twiki/bin/view/Xmipp/EulerAngles for a
* description of the Euler angles.
*/
void Euler_angles2matrix(double a, double b, double g, Matrix2D< double >& A,
bool homogeneous=false);
/** Euler angles2direction
*
* This function returns a vector parallel to the projection direction.
* Resizes v if needed
*/
void Euler_angles2direction(double alpha,
double beta,
Matrix1D< double >& v);
/** Euler direction2angles
*
* This function returns the 2 Euler angles (rot&tilt) associated to the direction given by
* the vector v.
*/
void Euler_direction2angles(Matrix1D< double >& v,
double& alpha,
double& beta);
/** "Euler" matrix --> angles
*
* This function compute a set of Euler angles which result in an "Euler" matrix
* as the one given. See \ref Euler_angles2matrix to know more about how this
* matrix is computed and what each row means. The result angles are in degrees.
* Alpha, beta and gamma are respectively the first, second and third rotation
* angles. If the input matrix is not 3x3 then an exception is thrown, the
* function doesn't check that the Euler matrix is truly representing a
* coordinate system.
*
* @code
* Euler_matrix2angles(Euler, alpha, beta, gamma);
* @endcode
*/
void Euler_matrix2angles(const Matrix2D< double >& A,
double& alpha,
double& beta,
double& gamma);
/** Up-Down projection equivalence
*
* As you know a projection view from a point has got its homologous from its
* diametrized point in the projection sphere. This function takes a projection
* defined by its 3 Euler angles and computes an equivalent set of Euler angles
* from which the view is exactly the same but in the other part of the sphere
* (if the projection is taken from the bottom then the new projection from the
* top, and viceversa). The defined projections are exactly the same except for
* a flip over X axis, ie, an up-down inversion. Exactly the correction
* performed is:
*
* @code
* newrot = rot;
* newtilt = tilt + 180;
* newpsi = -(180 + psi);
* @endcode
*
* @code
* Euler_up_down(rot, tilt, psi, newrot, newtilt, newpsi);
* @endcode
*/
void Euler_up_down(double rot,
double tilt,
double psi,
double& newrot,
double& newtilt,
double& newpsi);
/** The same view but differently expressed
*
* As you know a projection view from a point can be expressed with different
* sets of Euler angles. This function gives you another expression of the Euler
* angles for this point of view. Exactly the operation performed is:
*
* @code
* newrot = rot + 180;
* newtilt = -tilt;
* newpsi = -180 + psi;
* @endcode
*
* @code
* Euler_another_set(rot, tilt, psi, newrot, newtilt, newpsi);
* @endcode
*/
void Euler_another_set(double rot,
double tilt,
double psi,
double& newrot,
double& newtilt,
double& newpsi);
/** Mirror over Y axis
*
* Given a set of Euler angles this function returns a new set which define a
* mirrored (over Y axis) version of the former projection.
*
* @code
* -----> X X<------
* | |
* | |
* | ======> |
* v v
* Y Y
* @endcode
*
* The operation performed is
*
* @code
* newrot = rot;
* newtilt = tilt + 180;
* newpsi = -psi;
* @endcode
*
* @code
* Euler_mirrorY(rot, tilt, psi, newrot, newtilt, newpsi);
* @endcode
*/
void Euler_mirrorY(double rot,
double tilt,
double psi,
double& newrot,
double& newtilt,
double& newpsi);
/** Mirror over X axis
*
* Given a set of Euler angles this function returns a new set which define a
* mirrored (over X axis) version of the former projection.
*
* @code
* -----> X Y
* | ^
* | |
* | ======> |
* v |
* Y -----> X
* @endcode
*
* The operation performed is
*
* @code
* newrot = rot;
* newtilt = tilt + 180;
* newpsi = 180 - psi;
* @endcode
*
* @code
* Euler_mirrorX(rot, tilt, psi, newrot, newtilt, newpsi);
* @endcode
*/
void Euler_mirrorX(double rot,
double tilt,
double psi,
double& newrot,
double& newtilt,
double& newpsi);
/** Mirror over X and Y axes
*
* Given a set of Euler angles this function returns a new set which define a
* mirrored (over X and Y axes at the same time) version of the former
* projection.
*
* @code
* -----> X Y
* | ^
* | |
* | ======> |
* v |
* Y X<-----
* @endcode
*
* The operation performed is
*
* @code
* newrot = rot;
* newtilt = tilt;
* newpsi = 180 + psi;
* @endcode
*
* @code
* Euler_mirrorX(rot, tilt, psi, newrot, newtilt, newpsi);
* @endcode
*/
void Euler_mirrorXY(double rot,
double tilt,
double psi,
double& newrot,
double& newtilt,
double& newpsi);
/** Apply a geometrical transformation
*
* The idea behind this function is the following. 3 Euler angles define a point
* of view for a projection, but also a coordinate system. You might apply a
* geometrical transformation to this system, and then compute back what the
* Euler angles for the new system are. This could be used to "mirror" points of
* view, rotate them and all the stuff. The transformation matrix must be 3x3
* but it must transform R3 vectors into R3 vectors (that is a normal 3D
* transformation matrix when vector coordinates are not homogeneous) and it
* will be applied in the sense:
*
* @code
* New Euler matrix = L * Old Euler matrix * R
* @endcode
*
* where you know that the Euler matrix rows represent the different system
* axes. See Euler_angles2matrix for more information about the Euler coordinate
* system.
*
* @code
* Matrix2D< double > R60 = rotation3DMatrix(60, 'Z');
* R60.resize(3, 3); // Get rid of homogeneous part
* Matrix2D< double > I(3, 3);
* I.initIdentity();
* Euler_apply_transf(I, R60, rot, tilt, psi, newrot, newtilt, newpsi);
* @endcode
*/
void Euler_apply_transf(const Matrix2D< double >& L,
const Matrix2D< double >& R,
double rot,
double tilt,
double psi,
double& newrot,
double& newtilt,
double& newpsi);
/** 3D Rotation matrix after 3 Euler angles
*
* Creates a rotational matrix (4x4) for volumes around the combination of the 3
* rotations around ZYZ. All angles are in degrees. You must use it with
* IS_NOT_INV in applyGeometry.
*
* @code
* Matrix2D< float > euler = Euler_rotation3DMatrix(60, 30, 60);
* @endcode
*/
void Euler_rotation3DMatrix(double rot, double tilt, double psi,
Matrix2D<double> &result);
//@}
#endif
|