This file is indexed.

/usr/include/relion-1.3/src/macros.h is in librelion-dev-common 1.3+dfsg-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
/***************************************************************************
 *
 * Author: "Sjors H.W. Scheres"
 * MRC Laboratory of Molecular Biology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * This complete copyright notice must be included in any revised version of the
 * source code. Additional authorship citations may be added, but existing
 * author citations must be preserved.
 ***************************************************************************/
/***************************************************************************
 *
 * Authors:     Carlos Oscar S. Sorzano (coss@cnb.csic.es)
 *
 * Unidad de  Bioinformatica of Centro Nacional de Biotecnologia , CSIC
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
 * 02111-1307  USA
 *
 *  All comments concerning this program package may be sent to the
 *  e-mail address 'xmipp@cnb.csic.es'
 ***************************************************************************/

#ifndef MACROS_H
#define MACROS_H

#ifndef _CYGWIN
#ifdef __APPLE__
#include <limits.h>
#else
#include <values.h>
#endif
#endif

#ifndef MINFLOAT
#define MINFLOAT -1e30
#endif
#ifndef MAXFLOAT
#define MAXFLOAT  1e30
#endif

//#define DEBUG
//#define DEBUG_CHECKSIZES

/// @defgroup Macros Macros
/// @ingroup DataLibrary
//@{
/// @name Constants
//@{

/** Pi
 * @ingroup MacrosConstants
 */
#ifndef PI
#define PI 3.14159265358979323846
#endif

/** Equal accuracy
 *
 * In a comparison if two values are closer than this epsilon they are said to
 * be the same. Actually set to 1e-6
 */
#define XMIPP_EQUAL_ACCURACY 1e-6
//@}

/// @name Numerical functions
//@{
/** Absolute value
 *
 * Valid for any kind of number (int, short, float, etc)
 *
 * @code
 * x = ABS(x);
 * @endcode
 */
#ifndef ABS
#define ABS(x) (((x) >= 0) ? (x) : (-(x)))
#endif

/** Sign of
 *
 * Valid for any kind of number (int, short, float, etc). It returns +1 or -1
 *
 * @code
 * if (SGN(x) == -1)
 *     std::cout << "x is negative" << std::endl;
 * @endcode
 */
#ifndef SGN
#define SGN(x) (((x) >= 0) ? 1 : -1)
#endif

/** Sign of, considering 0 as 0
 *
 * Valid for any kind of number (int, short, float, etc). It returns +1 if the
 * number is positive, -1 if the number is negative, and 0 if the number is 0.
 *
 * @code
 * if (SGN0(x) == -1)
 *     std::cout << "x is negative" << std::endl;
 * @endcode
 */
#ifndef SGN0
#define SGN0(x) (((x) >= 0) ? (((x) == 0) ? 0:1) : -1)
#endif

/** Minimum
 *
 * Valid for any kind of numbers (int, short, float, etc).
 *
 * @code
 * min_val = XMIPP_MIN(x, y);
 * @endcode
 */
#ifndef XMIPP_MIN
#define XMIPP_MIN(x, y) (((x) >= (y)) ? (y) : (x))
#endif

/** Maximum
 *
 * Valid for any kind of numbers (int, short, float, etc).
 *
 * @code
 * max_val = XMIPP_MAX(x, y);
 * @endcode
 */
#ifndef XMIPP_MAX
#define XMIPP_MAX(x,y) (((x)>=(y))?(x):(y))
#endif

/** Round to next integer
 *
 * Valid for any kind of numbers (int, short, float, etc). The result is of type
 * integer.
 *
 * @code
 * a = ROUND(-0.8); // a = -1
 * a = ROUND(-0.2); // a = 0
 * a = ROUND(0.2); // a = 0
 * a = ROUND(0.8); // a = 1
 * @endcode
 */
#ifndef ROUND
#define ROUND(x) (((x) > 0) ? (int)((x) + 0.5) : (int)((x) - 0.5))
#endif

/** Round to next larger integer
 *
 * Valid for any kind of numbers (int, short, float, etc). The result is of type
 * integer.
 *
 * @code
 * a = CEIL(-0.8); // a = 0
 * a = CEIL(-0.2); // a = 0
 * a = CEIL(0.2); // a = 1
 * a = CEIL(0.8); // a = 1
 * @endcode
 */
#define CEIL(x) (((x) == (int)(x)) ? (int)(x):(((x) > 0) ? (int)((x) + 1) : \
                 (int)(x)))

/** Round to next smaller integer
 *
 * Valid for any kind of numbers (int, short, float, etc). The result is of type
 * integer.
 *
 * @code
 * a = FLOOR(-0.8); // a = -1
 * a = FLOOR(-0.2); // a = -1
 * a = FLOOR(0.2); // a = 0
 * a = FLOOR(0.8); // a = 0
 * @endcode
 */
#define FLOOR(x) (((x) == (int)(x)) ? (int)(x):(((x) > 0) ? (int)(x) : \
                  (int)((x) - 1)))

/** Return the fractional part of a value
 *
 * The fractional part of 3.7 is 0.7 and of -3.7 is -0.7.
 */
#define FRACTION(x) ((x) - (int)(x))

/** Clip in a saturation fashion
 *
 * CLIP is a macro which acts like a saturation curve, a value x is "clipped" to
 * a range defined by x0 and xF, for example the output values for the following
 * x and CLIP(x,-2,2) would be
 *
 * @code
 * x = ... -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 ...
 * output = ... -2 -2 -2 -2 -2 -2 -2 -1 0 1 2 2 2 2 2 2 2 ...
 * @endcode
 */
#define CLIP(x, x0, xF) (((x) < (x0)) ? (x0) : (((x) > (xF)) ? (xF) : (x)))

/** Wrapping for integers
 *
 * intWRAP performs a wrapping in the integer set, when the cycle is finsihed it
 * begins again. For example, for intWRAP(x,-2,2) would be
 *
 * @code
 * x = ... -8 -7 -6 -5 -4 -3 -2 -1  0  1  2  3  4  5  6  7  8 ...
 * output = ...  2 -2 -1  0  1  2 -2 -1  0  1  2 -2 -1  0  1  2 -2 ...
 * @endcode
 */
#define intWRAP(x, x0, xF) (((x) >= (x0) && (x) <= (xF)) ? (x) : ((x) < (x0)) \
                            ? ((x) - (int)(((x) - (x0) + 1) / ((xF) - (x0) + 1) - 1) * \
                               ((xF) - (x0) + 1)) : ((x) - (int)(((x) - (xF) - 1) / ((xF) - (x0) + 1) \
                                                                 + 1) * ((xF) - (x0) + 1)))

/** Wrapping for real numbers
 *
 * realWRAP is used to keep a floating number between a range with a wrapping
 * fashion. For instance, it is used in trigonometry to say that an angle of
 * 5*PI is the same as PI, ie, to keep an angle in the range 0...2*PI
 *
 * @code
 * Corrected_angle = realWRAP(angle, 0, 2*PI);
 * @endcode
 */
#define realWRAP(x, x0, xF) (((x) >= (x0) && (x) <= (xF)) ? (x) : ((x) < (x0)) \
                             ? ((x) - (int)(((x) - (x0)) / ((xF) - (x0)) - 1) * ((xF) - (x0))) : \
                             ((x) - (int)(((x) - (xF)) / ((xF) - (x0)) + 1) * ((xF) - (x0))))

/** Degrees to radians
 *
 * @code
 * angle_in_radians = DEG2RAD(ang_in_degrees);
 * @endcode
 */
#define DEG2RAD(d) ((d) * PI / 180)

/** Radians to degrees
 *
 * @code
 * angle_in_degrees = RAD2DEG(ang_in_radians);
 * @endcode
 */
#define RAD2DEG(r) ((r) * 180 / PI)

/** Cosine in degrees
 *
 * @code
 * if (COSD(90) == 0)
 *     std::cout << "This is in degrees!\n";
 * @endcode
 */
#define COSD(x) cos(PI * (x) / 180.)

/** ArcCosine in degrees
 *
 * @code
 * if (ACOSD(0.5) == 60)
 *     std::cout << "This is in degrees!\n";
 * @endcode
 */
#define ACOSD(x) acos((x)) * 180. / PI

/** Sine in degrees
 *
 * @code
 * if (SIND(90) == 1)
 *     std::cout << "This is in degrees!\n";
 * @endcode
 */
#define SIND(x) sin(PI * (x) / 180.)

/** ArcSine in degrees
 *
 * @code
 * if (ASIND(0.5) == 30.)
 *     std::cout << "This is in degrees!\n";
 * @endcode
 */
#define ASIND(x) asin((x)) * 180. / PI

/** SINC function
 *
 * The sinc function is defined as sin(PI*x)/(PI*x).
 */
#define SINC(x) (((x) < 0.0001 && (x) > -0.0001) ? 1 : sin(PI * (x)) \
                 / (PI * (x)))

/** Returns next positive power_class of 2
 *
 * It is supposed that the given number is positive although it's not needed to
 * be an integer
 *
 * @code
 * next_power = NEXT_POWER_OF_2(1000); // next_power = 1024
 * @endcode
 */
#define NEXT_POWER_OF_2(x) pow(2, ceil(log((double) x) / log(2.0)-XMIPP_EQUAL_ACCURACY) )

/** Linear interpolation
 *
 * From low (when a=0) to high (when a=1). The following value is returned
 * (equal to (a*h)+((1-a)*l)
 */
#define LIN_INTERP(a, l, h) ((l) + ((h) - (l)) * (a))

/** Cubic B-spline
 *
 */
#define BSPLINE03(arg,result) {\
	double x = ABS(arg); \
	if (x < 1.0) \
	    result=(x * x * (x - 2.0) * (1.0 / 2.0) + 2.0 / 3.0);\
	else if (x < 2.0) { \
	    x -= 2.0;\
	    result=x*x*x*(-1.0 / 6.0); \
	} else \
            result=0;\
    }

/** XOR
 *
 * Logical Xor
 */
#define XOR(a, b) (((a) && !(b)) || (!(a) && (b)))
//@}

/// @name Miscellaneous
//@{

/** Speed up temporary variables
 *
 * The following variables are provided:
 *
 * @code
 * float spduptmp0, spduptmp1, spduptmp2;
 * int ispduptmp0, ispduptmp1, ispduptmp2, ispduptmp3, ispduptmp4, ispduptmp5;
 * @endcode
 */
#define SPEED_UP_temps \
    double spduptmp0, spduptmp1, spduptmp2, \
    spduptmp3, spduptmp4, spduptmp5, \
    spduptmp6, spduptmp7, spduptmp8; \
    int   ispduptmp0, ispduptmp1, ispduptmp2, \
    ispduptmp3, ispduptmp4, ispduptmp5;

/** Swap two values
 *
 * It uses a temporal variable which must be of the same type as the two
 * parameters
 */
#define SWAP(a, b, tmp) {\
        tmp = a; \
        a = b; \
        b = tmp; }

/** Starting point for Xmipp volume/image
 *
 * Given a size (in some direction), this function returns the first index for
 * a volume/image/array with this size. The formula is -(int) ((float) (size)
 * / 2.0)
 */
#define FIRST_XMIPP_INDEX(size) -(long int)((float) (size) / 2.0)

/** Starting point for Xmipp volume/image
 * @ingroup MacrosMisc
 *
 * Given a size (in some direction), this function returns the first index for a
 * volume/image/array with this size. The formula is FIRST_XMIPP_INDEX(size) +
 * (size) - 1
 */
#define LAST_XMIPP_INDEX(size) FIRST_XMIPP_INDEX(size) + (size) - 1
//@}
//@}
#endif