This file is indexed.

/usr/share/perl5/Test/Fatal.pm is in libtest-fatal-perl 0.012-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
use strict;
use warnings;
package Test::Fatal;
{
  $Test::Fatal::VERSION = '0.012';
}
# ABSTRACT: incredibly simple helpers for testing code with exceptions


use Carp ();
use Try::Tiny 0.07;

use Exporter 5.57 'import';

our @EXPORT    = qw(exception);
our @EXPORT_OK = qw(exception success dies_ok lives_ok);


our ($REAL_TBL, $REAL_CALCULATED_TBL) = (1, 1);

sub exception (&) {
  my $code = shift;

  return try {
    my $incremented = $Test::Builder::Level - $REAL_CALCULATED_TBL;
    local $Test::Builder::Level = $REAL_CALCULATED_TBL;
    if ($incremented) {
        # each call to exception adds 5 stack frames
        $Test::Builder::Level += 5;
        for my $i (1..$incremented) {
            # -2 because we want to see it from the perspective of the call to
            # is() within the call to $code->()
            my $caller = caller($Test::Builder::Level - 2);
            if ($caller eq __PACKAGE__) {
                # each call to exception adds 5 stack frames
                $Test::Builder::Level = $Test::Builder::Level + 5;
            }
            else {
                $Test::Builder::Level = $Test::Builder::Level + 1;
            }
        }
    }

    local $REAL_CALCULATED_TBL = $Test::Builder::Level;
    $code->();
    return undef;
  } catch {
    return $_ if $_;

    my $problem = defined $_ ? 'false' : 'undef';
    Carp::confess("$problem exception caught by Test::Fatal::exception");
  };
}


sub success (&;@) {
  my $code = shift;
  return finally( sub {
    return if @_; # <-- only run on success
    $code->();
  }, @_ );
}


my $Tester;

# Signature should match that of Test::Exception
sub dies_ok (&;$) {
  my $code = shift;
  my $name = shift;

  require Test::Builder;
  $Tester ||= Test::Builder->new;

  my $ok = $Tester->ok( exception( \&$code ), $name );
  $ok or $Tester->diag( "expected an exception but none was raised" );
  return $ok;
}

sub lives_ok (&;$) {
  my $code = shift;
  my $name = shift;

  require Test::Builder;
  $Tester ||= Test::Builder->new;

  my $ok = $Tester->ok( !exception( \&$code ), $name );
  $ok or $Tester->diag( "expected return but an exception was raised" );
  return $ok;
}

1;

__END__

=pod

=head1 NAME

Test::Fatal - incredibly simple helpers for testing code with exceptions

=head1 VERSION

version 0.012

=head1 SYNOPSIS

  use Test::More;
  use Test::Fatal;

  use System::Under::Test qw(might_die);

  is(
    exception { might_die; },
    undef,
    "the code lived",
  );

  like(
    exception { might_die; },
    qr/turns out it died/,
    "the code died as expected",
  );

  isa_ok(
    exception { might_die; },
    'Exception::Whatever',
    'the thrown exception',
  );

=head1 DESCRIPTION

Test::Fatal is an alternative to the popular L<Test::Exception>.  It does much
less, but should allow greater flexibility in testing exception-throwing code
with about the same amount of typing.

It exports one routine by default: C<exception>.

=head1 FUNCTIONS

=head2 exception

  my $exception = exception { ... };

C<exception> takes a bare block of code and returns the exception thrown by
that block.  If no exception was thrown, it returns undef.

B<Achtung!>  If the block results in a I<false> exception, such as 0 or the
empty string, Test::Fatal itself will die.  Since either of these cases
indicates a serious problem with the system under testing, this behavior is
considered a I<feature>.  If you must test for these conditions, you should use
L<Try::Tiny>'s try/catch mechanism.  (Try::Tiny is the underlying exception
handling system of Test::Fatal.)

Note that there is no TAP assert being performed.  In other words, no "ok" or
"not ok" line is emitted.  It's up to you to use the rest of C<exception> in an
existing test like C<ok>, C<isa_ok>, C<is>, et cetera.  Or you may wish to use
the C<dies_ok> and C<lives_ok> wrappers, which do provide TAP output.

C<exception> does I<not> alter the stack presented to the called block, meaning
that if the exception returned has a stack trace, it will include some frames
between the code calling C<exception> and the thing throwing the exception.
This is considered a I<feature> because it avoids the occasionally twitchy
C<Sub::Uplevel> mechanism.

B<Achtung!>  This is not a great idea:

  sub exception_like(&$;$) {
      my ($code, $pattern, $name) = @_;
      like( &exception($code), $pattern, $name );
  }

  exception_like(sub { }, qr/foo/, 'foo appears in the exception');

If the code in the C<...> is going to throw a stack trace with the arguments to
each subroutine in its call stack (for example via C<Carp::confess>,
the test name, "foo appears in the exception" will itself be matched by the
regex.  Instead, write this:

  like( exception { ... }, qr/foo/, 'foo appears in the exception' );

B<Achtung>: One final bad idea:

  isnt( exception { ... }, undef, "my code died!");

It's true that this tests that your code died, but you should really test that
it died I<for the right reason>.  For example, if you make an unrelated mistake
in the block, like using the wrong dereference, your test will pass even though
the code to be tested isn't really run at all.  If you're expecting an
inspectable exception with an identifier or class, test that.  If you're
expecting a string exception, consider using C<like>.

=head2 success

  try {
    should_live;
  } catch {
    fail("boo, we died");
  } success {
    pass("hooray, we lived");
  };

C<success>, exported only by request, is a L<Try::Tiny> helper with semantics
identical to L<C<finally>|Try::Tiny/finally>, but the body of the block will
only be run if the C<try> block ran without error.

Although almost any needed exception tests can be performed with C<exception>,
success blocks may sometimes help organize complex testing.

=head2 dies_ok

=head2 lives_ok

Exported only by request, these two functions run a given block of code, and
provide TAP output indicating if it did, or did not throw an exception. 
These provide an easy upgrade path for replacing existing unit tests based on
C<Test::Exception>.

RJBS does not suggest using this except as a convenience while porting tests to
use Test::Fatal's C<exception> routine.

  use Test::More tests => 2;
  use Test::Fatal qw(dies_ok lives_ok);

  dies_ok { die "I failed" } 'code that fails';

  lives_ok { return "I'm still alive" } 'code that does not fail';

=head1 AUTHOR

Ricardo Signes <rjbs@cpan.org>

=head1 COPYRIGHT AND LICENSE

This software is copyright (c) 2010 by Ricardo Signes.

This is free software; you can redistribute it and/or modify it under
the same terms as the Perl 5 programming language system itself.

=cut