This file is indexed.

/usr/share/perl5/Text/Context.pm is in libtext-context-perl 3.7-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
package Text::Context;

use strict;
use warnings;

use UNIVERSAL::require;

our $VERSION = "3.7";

=head1 NAME

Text::Context - Handle highlighting search result context snippets

=head1 SYNOPSIS

  use Text::Context;

  my $snippet = Text::Context->new($text, @keywords);

  $snippet->keywords("foo", "bar"); # In case you change your mind

  print $snippet->as_html;
  print $snippet->as_text;

=head1 DESCRIPTION

Given a piece of text and some search terms, produces an object
which locates the search terms in the message, extracts a reasonable-length
string containing all the search terms, and optionally dumps the string out
as HTML text with the search terms highlighted in bold.

=head2 new

Creates a new snippet object for holding and formatting context for
search terms.

=cut

sub new {
	my ($class, $text, @keywords) = @_;
	my $self = bless { text => $text, keywords => [] }, $class;
	$self->keywords(@keywords);
	return $self;
}

=head2 keywords

Accessor method to get/set keywords. As the context search is done
case-insensitively, the keywords will be lower-cased.

=cut

sub keywords {
	my ($self, @keywords) = @_;
	$self->{keywords} = [ map { s/\s+/ /g; lc $_ } @keywords ] if @keywords;
	return @{ $self->{keywords} };
}

=begin maintenance

=head2 prepare_text

Turns the text into a set of Paragraph objects, collapsing multiple
spaces in the text and feeding the paragraphs, in order, onto the
C<text_a> member.

=head2 para_class

The Paragraph class to use. This defaults to 'Text::Context::Para'

=end maintenance

=cut

sub para_class { "Text::Context::Para" }

sub prepare_text {
	my $self = shift;
	my @paras = split /\n\n/, $self->{text};
	for (0 .. $#paras) {
		my $x = $paras[$_];
		$x =~ s/\s+/ /g;
		$self->para_class->require;
		push @{ $self->{text_a} }, $self->para_class->new($x, $_);
	}
}

=begin maintenance

=head2 permute_keywords

This is very clever. To determine which keywords "apply" to a given
paragraph, we first produce a set of all possible keyword sets. For
instance, given "a", "b" and "c", we want to produce

    a b c
    a b 
    a   c
    a
      b c
      b
        c

We do this by counting in binary, and then mapping the counts onto
keywords.

=end maintenance

=cut

sub permute_keywords {
	my $self = shift;
	my @permutation;
	for my $bitstring (1 .. (2**@{ $self->{keywords} }) - 1) {
		my @thisperm;
		for my $bitmask (0 .. @{ $self->{keywords} } - 1) {
			push @thisperm, $self->{keywords}[$bitmask]
				if $bitstring & 2**$bitmask;
		}
		push @permutation, \@thisperm;
	}
	return reverse @permutation;
}

=begin maintenance

=head2 score_para / get_appropriate_paras

Now we want to find a "score" for this paragraph, finding the best set
of keywords which "apply" to it. We favour keyword sets which have a
large number of matches (obviously a paragraph is better if it matches
"a" and "c" than if it just matches "a") and with multi-word keywords.
(A paragraph which matches "fresh cheese sandwiches" en bloc is worth
picking out, even if it has no other matches.)

=end maintenance

=cut

sub score_para {
	my ($self, $para) = @_;
	my $content = $para->{content};
	my %matches;

	# Do all the matching of keywords in advance of the boring
	# permutation bit
	for my $word (@{ $self->{keywords} }) {
		my $word_score = 0;
		$word_score += 1 + ($content =~ tr/ / /) if $content =~ /\b\Q$word\E\b/i;
		$matches{$word} = $word_score;
	}

	#XXX : Possible optimization: Give up if there are no matches

	for my $wordset ($self->permute_keywords) {
		my $this_score = 0;
		$this_score += $matches{$_} for @$wordset;
		$para->{scoretable}[$this_score] = $wordset if $this_score > @$wordset;
	}
	$para->{final_score} = $#{ $para->{scoretable} };
}

sub _set_intersection {
	my %union;
	my %isect;
	for (@_) { $union{$_}++ && ($isect{$_} = $_) }
	return values %isect;
}

sub _set_difference {
	my ($a, $b) = @_;
	my %seen;
	@seen{@$b} = ();
	return grep { !exists $seen{$_} } @$a;
}

sub get_appropriate_paras {
	my $self = shift;
	my @app_paras;
	my @keywords = @{ $self->{keywords} };
	my @paras    =
		sort { $b->{final_score} <=> $a->{final_score} } @{ $self->{text_a} };
	for my $para (@paras) {
		my @words = _set_intersection($para->best_keywords, @keywords);
		if (@words) {
			@keywords = _set_difference(\@keywords, \@words);
			$para->{marked_words} = \@words;
			push @app_paras, $para;
			last if !@keywords;
		}
	}
	$self->{app_paras} = [ sort { $a->{order} <=> $b->{order} } @app_paras ];
	return @{ $self->{app_paras} };
}

=head2 paras

    @paras = $self->paras($maxlen)

Return shortened paragraphs to fit together into a snippet of at most
C<$maxlen> characters.

=cut

sub paras {
	my $self = shift;
	my $max_len = shift || 80;
	$self->prepare_text;
	$self->score_para($_) for @{ $self->{text_a} };
	my @paras = $self->get_appropriate_paras;
	return unless @paras;

	# XXX: Algorithm may get better here by considering number of marked
	# up words as weight
	return map { $_->slim($max_len / @paras) } $self->get_appropriate_paras;
}

=head2 as_text

Calculates a "representative" string which contains
the given search terms. If there's lots and lots of context between the
terms, it's replaced with an ellipsis.

=cut

sub as_text {
	return join " ... ", map { $_->as_text } $_[0]->paras;
}

=head2 as_html([ start => "<some tag>", end => "<some end tag>" ])

Markup the snippet as a HTML string using the specified delimiters or
with a default set of delimiters (C<E<lt>span class="quoted"E<gt>>).

=cut

sub as_html {
	my $self = shift;
	my %args = @_;

	my ($start, $end) = @args{qw(start end)};
	return join " ... ", map { $_->marked_up($start, $end) } $self->paras;
}

=head1 AUTHOR

Original author: Simon Cozens

Current maintainer: Tony Bowden

=head1 BUGS and QUERIES

Please direct all correspondence regarding this module to:
  bug-Text-Context@rt.cpan.org

=head1 COPYRIGHT AND LICENSE

  Copyright (C) 2002-2005 Kasei

  This program is free software; you can redistribute it and/or modify
  it under the terms of the GNU General Public License; either version
  2 of the License, or (at your option) any later version.

  This program is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

=cut

1;