This file is indexed.

/var/lib/mobyle/programs/BMGE.xml is in mobyle-programs 5.1.2-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
<?xml version='1.0' encoding='UTF-8'?>
<!-- XML Authors: Corinne Maufrais, Nicolas Joly and Bertrand Neron,             -->
<!-- 'Biological Software and Databases' Group, Institut Pasteur, Paris.         -->
<!-- Distributed under LGPLv2 License. Please refer to the COPYING.LIB document. -->
<program>
  <head>
    <name>BMGE</name>
    <version>1.0</version>
    <doc>
      <title>BMGE</title>
      <description>
        <text lang="en">Block Mapping and Gathering using Entropy</text>
      </description>
      <authors>Alexis Criscuolo and Simonetta Gribaldo</authors>
      <reference>Criscuolo A, Gribaldo S (2010) BMGE (Block Mapping and Gathering with Entropy): selection of phylogenetic informative regions from multiple
sequence alignments. BMC Evolutionary Biology 10:210.
	</reference>
	<sourcelink>ftp://ftp.pasteur.fr/pub/gensoft/projects/BMGE/</sourcelink>
      <doclink>http://bioweb2.pasteur.fr/docs/BMGE/BMGE_doc.pdf</doclink>
    </doc>
    <category>alignment:multiple:information</category>
    <command>BMGE</command>
  </head>
  <parameters>
    <paragraph>
      <name>input</name>
      <prompt lang="en">Input</prompt>
      <argpos>2</argpos>
      <parameters>
        <parameter ismandatory="1" issimple="1">
          <name>infile</name>
          <prompt lang="en">Alignment (-i)</prompt>
          <type>
            <biotype>Protein</biotype>
            <biotype>DNA</biotype>
            <datatype>
              <class>Alignment</class>
            </datatype>
            <dataFormat>FASTA</dataFormat>
            <dataFormat>PHYLIPS</dataFormat>
          </type>
          <format>
            <code proglang="perl">" -i $value"</code>
            <code proglang="python">" -i "+str(value)</code>
          </format>
          <argpos>1</argpos>
          <comment>
            <text lang="en">BMGE uses FASTA or PHYLIP sequential format for input. These are
                    plain text files. There is no limit on the length of the
                    alignment. There is also no limit on the length of the label of
                    a sequence (i.e. its FASTA annotation line), although a too long
                    label (e.g. more than 100 letters) will be truncated if the
                    output format is PHYLIP sequential.</text>
          </comment>
        </parameter>
        <parameter ismandatory="1" issimple="1">
          <name>input_type</name>
          <prompt lang="en">Type of sequence (-t)</prompt>
          <type>
            <datatype>
              <class>Choice</class>
            </datatype>
          </type>
          <vdef>
            <value>null</value>
          </vdef>
          <vlist>
            <velem undef="1">
              <value>null</value>
              <label>Set the input sequence coding</label>
            </velem>
            <velem>
              <value>AA</value>
              <label>Amino acid</label>
            </velem>
            <velem>
              <value>DNA</value>
              <label>Nucleotide</label>
            </velem>
            <velem>
              <value>CODON</value>
              <label>Codon</label>
            </velem>
          </vlist>
          <format>
            <code proglang="perl">(defined $value and $value ne $vdef) ? " -t $value" : ""</code>
            <code proglang="python">("", " -t "+str(value))[value is not None and value!=vdef]</code>
          </format>
          <argpos>2</argpos>
          <comment>
            <text lang="en">Both standard single-letter amino acid and nucleotide alphabets
                          are used by BMGE. When using amino acid sequences, degenerated
                          character states B and Z are understood by BMGE; similarly,
                          degenerated nucleotide characters are also understood. The
                          character state X is understood to be any of the 4 or 20
                          character states when using as input nucleotide or amino acid
                          sequences, respectively. Dashes (i.e. '-') are understood as
                          gaps, whereas dots (i.e. '.'), as any other single letter that
                          are not inside standard alphabets, are considered as unknown
                          character state (i.e. '?'). Nucleotide sequences can be set as
                          codon ones. In this case, each successive nucleotide character
                          triplet is considered as one codon character.</text>
          </comment>
        </parameter>
      </parameters>
    </paragraph>
    <paragraph>
      <name>options</name>
      <prompt lang="en">Control options</prompt>
      <parameters>
        <parameter>
          <name>matrixaa</name>
          <prompt lang="en">Similarity Matrices for amino acid and codon sequences (-m)</prompt>
          <type>
            <datatype>
              <class>Choice</class>
            </datatype>
          </type>
          <precond>
            <code proglang="perl">$input_type eq 'AA' or $input_type eq 'CODON'</code>
            <code proglang="python">input_type in ['AA', 'CODON']</code>
          </precond>
          <vdef>
            <value>BLOSUM62</value>
          </vdef>
          <vlist>
            <velem>
              <value>BLOSUM62</value>
              <label>BLOSUM62</label>
            </velem>
            <velem>
              <value>ID</value>
              <label>Identity</label>
            </velem>
            <velem>
              <value>BLOSUM30</value>
              <label>BLOSUM30</label>
            </velem>
            <velem>
              <value>BLOSUM35</value>
              <label>BLOSUM35</label>
            </velem>
            <velem>
              <value>BLOSUM40</value>
              <label>BLOSUM40</label>
            </velem>
            <velem>
              <value>BLOSUM45</value>
              <label>BLOSUM45</label>
            </velem>
            <velem>
              <value>BLOSUM50</value>
              <label>BLOSUM50</label>
            </velem>
            <velem>
              <value>BLOSUM55</value>
              <label>BLOSUM55</label>
            </velem>
            <velem>
              <value>BLOSUM60</value>
              <label>BLOSUM60</label>
            </velem>
            <velem>
              <value>BLOSUM65</value>
              <label>BLOSUM65</label>
            </velem>
            <velem>
              <value>BLOSUM70</value>
              <label>BLOSUM70</label>
            </velem>
            <velem>
              <value>BLOSUM75</value>
              <label>BLOSUM75</label>
            </velem>
            <velem>
              <value>BLOSUM80</value>
              <label>BLOSUM80</label>
            </velem>
            <velem>
              <value>BLOSUM85</value>
              <label>BLOSUM85</label>
            </velem>
            <velem>
              <value>BLOSUM90</value>
              <label>BLOSUM90</label>
            </velem>
            <velem>
              <value>BLOSUM95</value>
              <label>BLOSUM95</label>
            </velem>
          </vlist>
          <format>
            <code proglang="perl">(defined $value and $value ne $vdef) ? " -m $value" : ""</code>
            <code proglang="python">("", " -m "+str(value))[value is not None and value!=vdef]</code>
          </format>
          <argpos>3</argpos>
          <comment>
            <text lang="en">For each character, BMGE computes a score mainly determined by the entropy induced by
              the respective proportion of each residue. To estimate realistic
              scores that take into account biologically relevant substitution processes, BMGE weights the
              entropy estimation with substitution matrices.</text>
            <text lang="en">These option can be used with the 15 estimated BLOSUM matrices. BMGE uses by 
              default the popular BLOSUM62 matrix. The character
              trimming is progressively more stringent as the BLOSUM index
              increases (e.g. BLOSUM95); reciprocally, the trimming is
              progressively more relaxed as the BLOSUM index is lower (e.g.
              BLOSUM30). In practice, it is recommended to use BLOSUM95 with
              closely related sequences, and BLOSUM30 with distantly related
              sequences.</text>
            <text lang="en">If input sequences are set as codons, BMGE performs a conversion
              into amino acid sequences (following the universal genetic code)
              and uses BLOSUM matrices to estimate the entropy-like score for
              each codon character. So, with option -t set as CODON, one can
              modify the option -m only with BLOSUM matrices.
              It is also possible to use the identity matrix with any sequence
              types.</text>
          </comment>
        </parameter>
        <parameter>
          <name>matrixan</name>
          <prompt lang="en">Similarity Matrices for nucleotide sequences (-m)</prompt>
          <type>
            <datatype>
              <class>Choice</class>
            </datatype>
          </type>
          <precond>
            <code proglang="perl">$input_type eq 'DNA'</code>
            <code proglang="python">input_type in ['DNA']</code>
          </precond>
          <vdef>
            <value>DNAPAM100</value>
          </vdef>
          <vlist>
            <velem>
              <value>DNAPAM100</value>
              <label>DNAPAM100</label>
            </velem>
            <velem>
              <value>ID</value>
              <label>Identity</label>
            </velem>
            <velem>
              <value>DNAPAM1</value>
              <label>DNAPAM1</label>
            </velem>
            <velem>
              <value>DNAPAM5</value>
              <label>DNAPAM5</label>
            </velem>
            <velem>
              <value>DNAPAM10</value>
              <label>DNAPAM10</label>
            </velem>
            <velem>
              <value>DNAPAM20</value>
              <label>DNAPAM20</label>
            </velem>
            <velem>
              <value>DNAPAM30</value>
              <label>DNAPAM30</label>
            </velem>
            <velem>
              <value>DNAPAM40</value>
              <label>DNAPAM40</label>
            </velem>
            <velem>
              <value>DNAPAM50</value>
              <label>DNAPAM50</label>
            </velem>
            <velem>
              <value>DNAPAM60</value>
              <label>DNAPAM60</label>
            </velem>
            <velem>
              <value>DNAPAM70</value>
              <label>DNAPAM70</label>
            </velem>
            <velem>
              <value>DNAPAM80</value>
              <label>DNAPAM80</label>
            </velem>
            <velem>
              <value>DNAPAM90</value>
              <label>DNAPAM90</label>
            </velem>
            <velem>
              <value>DNAPAM110</value>
              <label>DNAPAM110</label>
            </velem>
            <velem>
              <value>DNAPAM120</value>
              <label>DNAPAM120</label>
            </velem>
            <velem>
              <value>DNAPAM130</value>
              <label>DNAPAM130</label>
            </velem>
            <velem>
              <value>DNAPAM140</value>
              <label>DNAPAM140</label>
            </velem>
            <velem>
              <value>DNAPAM150</value>
              <label>DNAPAM150</label>
            </velem>
            <velem>
              <value>DNAPAM160</value>
              <label>DNAPAM160</label>
            </velem>
            <velem>
              <value>DNAPAM170</value>
              <label>DNAPAM170</label>
            </velem>
            <velem>
              <value>DNAPAM180</value>
              <label>DNAPAM180</label>
            </velem>
            <velem>
              <value>DNAPAM190</value>
              <label>DNAPAM190</label>
            </velem>
            <velem>
              <value>DNAPAM200</value>
              <label>DNAPAM200</label>
            </velem>
            <velem>
              <value>DNAPAM210</value>
              <label>DNAPAM210</label>
            </velem>
            <velem>
              <value>DNAPAM220</value>
              <label>DNAPAM220</label>
            </velem>
            <velem>
              <value>DNAPAM230</value>
              <label>DNAPAM230</label>
            </velem>
            <velem>
              <value>DNAPAM240</value>
              <label>DNAPAM240</label>
            </velem>
            <velem>
              <value>DNAPAM250</value>
              <label>DNAPAM250</label>
            </velem>
            <velem>
              <value>DNAPAM260</value>
              <label>DNAPAM260</label>
            </velem>
            <velem>
              <value>DNAPAM270</value>
              <label>DNAPAM270</label>
            </velem>
            <velem>
              <value>DNAPAM280</value>
              <label>DNAPAM280</label>
            </velem>
            <velem>
              <value>DNAPAM290</value>
              <label>DNAPAM290</label>
            </velem>
            <velem>
              <value>DNAPAM300</value>
              <label>DNAPAM300</label>
            </velem>
            <velem>
              <value>DNAPAM310</value>
              <label>DNAPAM310</label>
            </velem>
            <velem>
              <value>DNAPAM320</value>
              <label>DNAPAM320</label>
            </velem>
            <velem>
              <value>DNAPAM330</value>
              <label>DNAPAM330</label>
            </velem>
            <velem>
              <value>DNAPAM340</value>
              <label>DNAPAM340</label>
            </velem>
            <velem>
              <value>DNAPAM350</value>
              <label>DNAPAM350</label>
            </velem>
            <velem>
              <value>DNAPAM360</value>
              <label>DNAPAM360</label>
            </velem>
            <velem>
              <value>DNAPAM370</value>
              <label>DNAPAM370</label>
            </velem>
            <velem>
              <value>DNAPAM380</value>
              <label>DNAPAM380</label>
            </velem>
            <velem>
              <value>DNAPAM390</value>
              <label>DNAPAM390</label>
            </velem>
            <velem>
              <value>DNAPAM400</value>
              <label>DNAPAM400</label>
            </velem>
            <velem>
              <value>DNAPAM410</value>
              <label>DNAPAM410</label>
            </velem>
            <velem>
              <value>DNAPAM420</value>
              <label>DNAPAM420</label>
            </velem>
            <velem>
              <value>DNAPAM430</value>
              <label>DNAPAM430</label>
            </velem>
            <velem>
              <value>DNAPAM440</value>
              <label>DNAPAM440</label>
            </velem>
            <velem>
              <value>DNAPAM450</value>
              <label>DNAPAM450</label>
            </velem>
            <velem>
              <value>DNAPAM460</value>
              <label>DNAPAM460</label>
            </velem>
            <velem>
              <value>DNAPAM470</value>
              <label>DNAPAM470</label>
            </velem>
            <velem>
              <value>DNAPAM480</value>
              <label>DNAPAM480</label>
            </velem>
            <velem>
              <value>DNAPAM490</value>
              <label>DNAPAM490</label>
            </velem>
            <velem>
              <value>DNAPAM500</value>
              <label>DNAPAM500</label>
            </velem>
          </vlist>
          <format>
            <code proglang="perl">(defined $value and $value ne $vdef) ? " -m $value" : ""</code>
            <code proglang="python">("", " -m "+str(value))[value is not None and value!=vdef]</code>
          </format>
          <argpos>3</argpos>
          <comment>
            <text lang="en">For nucleotide input sequences, BMGE uses PAM matrices with a
              fixed transition/transition ratio. BMGE can be used with all
              possible PAM matrices, from the most stringent (i.e. DNAPAM1) to
              highly relaxed ones (e.g. DNAPAM500). By default with nucleotide
              sequences, BMGE uses the PAM-100 matrix.</text>
            <text lang="en">It is also possible to use the identity matrix.</text>
          </comment>
        </parameter>
        <parameter>
          <name>transition</name>
          <prompt lang="en">Transition/transversion ratio for nucleotide sequences.</prompt>
          <type>
            <datatype>
              <class>Float</class>
            </datatype>
          </type>
          <precond>
            <code proglang="perl">$input_type eq 'DNA' and ($matrixan ne 'DNAPAM100' and  $matrixan ne 'ID' )</code>
            <code proglang="python">input_type in ['DNA'] and (matrixan != 'DNAPAM100' and  matrixan != 'ID' )</code>
          </precond>
          <vdef>
            <value>2.0</value>
          </vdef>
          <format>
            <code proglang="perl">(defined $value) ? ":$value " : ""</code>
            <code proglang="python">("", ":" +str(value) + " ")[value is not None]</code>
          </format>
          <argpos>4</argpos>
          <comment>
            <text lang="en">It is possible to indicate a transition/transversion ratio to
              better define the PAM matrices with nucleotide sequences. By
              default, BMGE uses a transition/transversion ratio of 2.</text>
          </comment>
        </parameter>
        <parameter>
          <name>gap_rate_cutoff</name>
          <prompt lang="en">Gap Rate Cut-off (-g)</prompt>
          <type>
            <datatype>
              <class>Float</class>
            </datatype>
          </type>
          <vdef>
            <value>0.2</value>
          </vdef>
          <format>
            <code proglang="perl">(defined $value and $value != $vdef) ? " -g $value" : ""</code>
            <code proglang="python">("", " -g "+str(value))[value is not None and value!=vdef]</code>
          </format>
          <ctrl>
            <message>
              <text lang="en">The value must be between 0 and 1</text>
            </message>
            <code proglang="perl">$value &gt;= 0 and $value &lt;= 1</code>
            <code proglang="python">value &gt;= 0 and value &lt;= 1</code>
          </ctrl>
          <argpos>5</argpos>
          <comment>
            <text lang="en">BMGE allows characters containing too many gaps to be removed
                with this option. By default, BMGE removes all characters with a
                gap frequency greater than 0.2.</text>
          </comment>
        </parameter>
        <parameter>
          <name>min_entropy</name>
          <prompt lang="en">Minimum entropy Score Cut-off (-h)</prompt>
          <type>
            <datatype>
              <class>Float</class>
            </datatype>
          </type>
          <vdef>
            <value>0.0</value>
          </vdef>
          <format>
            <code proglang="perl">(($max_entropy != 0.5 or $value != $vdef) and  ($max_entropy &gt; $value)) ? " -h $value:$max_entropy" : ""</code>
            <code proglang="python">("", " -h %s:%s " % ( value, max_entropy) )[ (max_entropy != 0.5 or value !=vdef) and  (max_entropy &gt; value)  ]</code>
          </format>
          <ctrl>
            <message>
              <text lang="en">The value must be between 0 and 1</text>
            </message>
            <code proglang="perl">$value &gt;= 0 and $value &lt;= 1</code>
            <code proglang="python">value &gt;= 0 and value &lt;= 1</code>
          </ctrl>
          <argpos>6</argpos>
          <comment>
            <text lang="en">Following the smoothing operation of the entropy-like score
              values across characters, BMGE selects characters associated with
              a score value greater than a fixed threshold. This cut-off is set
              to 0.0 by default.</text>
          </comment>
        </parameter>
        <parameter>
          <name>max_entropy</name>
          <prompt lang="en">Maximum entropy Score Cut-off (-h)</prompt>
          <type>
            <datatype>
              <class>Float</class>
            </datatype>
          </type>
          <vdef>
            <value>0.5</value>
          </vdef>
          <precond>
            <code proglang="perl">defined $min_entropy</code>
            <code proglang="python">min_entropy is not None</code>
          </precond>
          <ctrl>
            <message>
              <text lang="en">The value must be between 0 and 1 and greather than minimun entropy score</text>
            </message>
            <code proglang="perl">($value &gt;= 0 and $value &lt;= 1) and ($value &gt; $min_entropy)</code>
            <code proglang="python">(value &gt;= 0 and value &lt;= 1) and (value &gt; min_entropy)</code>
          </ctrl>
          <argpos>6</argpos>
          <comment>
            <text lang="en">Following the smoothing operation of the entropy-like score
              values across characters, BMGE selects characters associated with
              a score value below a fixed threshold. This cut-off is set to 0.5
              by default.</text>
          </comment>
        </parameter>
        <parameter>
          <name>minimun_block_size</name>
          <prompt lang="en">Minimum Block Size (-b)</prompt>
          <type>
            <datatype>
              <class>Integer</class>
            </datatype>
          </type>
          <vdef>
            <value>5</value>
          </vdef>
          <format>
            <code proglang="perl">(defined $value and $value != $vdef) ? " -b $value" : ""</code>
            <code proglang="python">("", " -b "+str(value) )[value is not None and value!=vdef]</code>
          </format>
          <comment>
            <text lang="en">BMGE only selects regions of size greater than or equal to 5. Use
              this option to modify this minimum block size parameter.</text>
          </comment>
          <argpos>7</argpos>
        </parameter>
        <!--<parameter>
            <name>trimming</name>
            <prompt lang="en">Stationary-based Trimming (-s)</prompt>
            <type>
              <datatype>
                <class>Boolean</class>
              </datatype>
            </type>
            <vdef>
              <value>0</value>
            </vdef>
            <format>
                <code proglang="perl">($value) ? " -s" : ""</code>
                <code proglang="python">("", " -s " )[ value ]</code>
              </format>
            <comment>
              <text lang="en">By setting this option to YES (NO by default), BMGE performs another 
               character trimming until the remaining characters are compositionally homogeneous, as 
               assessed by Stuart's (1955) test of marginal homogeneity between each pair of sequences. 
               If an html file is created (-oh), then all the Stuart's (1955) p-values estimated before and after 
               the stationary-based trimming will be written.</text>
              <text lang="en">It should be stressed that the stationary-based trimming is biased with short 
              alignments (e.g. less than 1,000 character length); consequently, it is more efficient on a 
              supermatrix of characters. Unfortunately, the running time is quite long (e.g. several hours 
              for more than 10,000 amino acid characters).</text>
            </comment>
            <argpos>8</argpos>
          </parameter>
          
        -->
      </parameters>
    </paragraph>
    <paragraph>
      <name>output_option</name>
      <prompt lang="en">Output format options</prompt>
      <parameters>
        <parameter>
          <name>phylip</name>
          <prompt lang="en">Output in phylip sequential format (-op)</prompt>
          <type>
            <datatype>
              <class>Boolean</class>
            </datatype>
          </type>
          <precond>
            <code proglang="perl">defined $infile</code>
            <code proglang="python">infile is not None</code>
          </precond>
          <vdef>
            <value>1</value>
          </vdef>
          <format>
            <code proglang="perl">( $value ) ? " -op $infile.phy" : ""</code>
            <code proglang="python">("", " -op "+ infile.split('.')[0] + ".phy ")[ value ]</code>
          </format>
          <argpos>9</argpos>
        </parameter>
        <parameter isout="1">
          <name>phylipout</name>
          <prompt lang="en">Output in phylip sequential format</prompt>
          <type>
            <datatype>
              <class>Alignment</class>
            </datatype>
            <dataFormat>PHYLIPS</dataFormat>
          </type>
          <precond>
            <code proglang="perl">$phylip</code>
            <code proglang="python">phylip</code>
          </precond>
          <filenames>
            <code proglang="perl">"$infile.phy"</code>
            <code proglang="python">infile.split('.')[0] + ".phy"</code>
          </filenames>
        </parameter>
        <parameter>
          <name>phylip_oppp</name>
          <prompt lang="en">Output in phylip sequential format. Special formating (-oppp)</prompt>
          <type>
            <datatype>
              <class>Boolean</class>
            </datatype>
          </type>
          <precond>
            <code proglang="perl">defined $infile</code>
            <code proglang="python">infile is not None</code>
          </precond>
          <vdef>
            <value>0</value>
          </vdef>
          <format>
            <code proglang="perl">( $value ) ? " -oppp $infile.phyp" : ""</code>
            <code proglang="python">("", " -oppp "+ infile.split('.')[0] + ".phyp ")[ value]</code>
          </format>
          <argpos>9</argpos>
          <comment>
            <text lang="en">If input sequences are in FASTA format with NCBI-formatted annotation lines, e.g.
                      &gt;field1|field2|field3|field4| field5 [field6]
            the options -oppp allow naming sequences by field6_____field4 ; knowing that field4 is generally
            an accession number, and field6 a
            taxon name, this option leads to PHYLIP files where each sequence is labelled as a
            taxon name and an accession number.</text>
          </comment>
        </parameter>
        <parameter isout="1">
          <name>phylipout_oppp</name>
          <prompt lang="en">Output in phylip sequential format</prompt>
          <type>
            <datatype>
              <class>Alignment</class>
            </datatype>
            <dataFormat>PHYLIPS</dataFormat>
          </type>
          <precond>
            <code proglang="perl">$phylip_oppp</code>
            <code proglang="python">phylip_oppp</code>
          </precond>
          <filenames>
            <code proglang="perl">"$infile.phyp"</code>
            <code proglang="python">infile.split('.')[0] + ".phyp"</code>
          </filenames>
        </parameter>
        <parameter>
          <name>nexus</name>
          <prompt lang="en">Output in nexus format (-on)</prompt>
          <type>
            <datatype>
              <class>Boolean</class>
            </datatype>
          </type>
          <precond>
            <code proglang="perl">defined $infile</code>
            <code proglang="python">infile is not None</code>
          </precond>
          <vdef>
            <value>0</value>
          </vdef>
          <format>
            <code proglang="perl">( $value ) ? " -on $infile.nex" : ""</code>
            <code proglang="python">("", " -on "+ infile.split('.')[0] + ".nex ")[ value ]</code>
          </format>
          <argpos>9</argpos>
        </parameter>
        <parameter isout="1">
          <name>nexusout</name>
          <prompt lang="en">Output in nexus format</prompt>
          <type>
            <datatype>
              <class>Alignment</class>
            </datatype>
            <dataFormat>NEXUS</dataFormat>
          </type>
          <precond>
            <code proglang="perl">$nexus</code>
            <code proglang="python">nexus</code>
          </precond>
          <filenames>
            <code proglang="perl">"$infile.nex"</code>
            <code proglang="python">infile.split('.')[0] + ".nex"</code>
          </filenames>
        </parameter>
        <parameter>
          <name>nexus_onnn</name>
          <prompt lang="en">Output in nexus format. Special formating (-onnn)</prompt>
          <type>
            <datatype>
              <class>Boolean</class>
            </datatype>
          </type>
          <precond>
            <code proglang="perl">defined $infile</code>
            <code proglang="python">infile is not None</code>
          </precond>
          <vdef>
            <value>0</value>
          </vdef>
          <format>
            <code proglang="perl">( $value ) ? " -onnn $infile.nexn" : ""</code>
            <code proglang="python">("", " -onnn "+ infile.split('.')[0] + ".nexn ")[ value ]</code>
          </format>
          <argpos>9</argpos>
          <comment>
            <text lang="en">If input sequences are in FASTA format with NCBI-formatted
                 annotation lines,
               e.g. &gt;field1|field2|field3|field4| field5 [field6]
               the option -onnn allow naming sequences by field6_____field4 ;
               knowing that field4 is generally an accession number and field6 a
              taxon name, this option leads to NEXUS files where each sequence
              is labelled as a taxon name and an accession number.</text>
          </comment>
        </parameter>
        <parameter isout="1">
          <name>nexusout_onnn</name>
          <prompt lang="en">Output in nexus format</prompt>
          <type>
            <datatype>
              <class>Alignment</class>
            </datatype>
            <dataFormat>NEXUS</dataFormat>
          </type>
          <precond>
            <code proglang="perl">$nexus_onnn</code>
            <code proglang="python">nexus_onnn</code>
          </precond>
          <filenames>
            <code proglang="perl">"$infile.nexn"</code>
            <code proglang="python">infile.split('.')[0] + ".nexn"</code>
          </filenames>
        </parameter>
        <parameter>
          <name>fasta</name>
          <prompt lang="en">Output in fasta format (-of)</prompt>
          <type>
            <datatype>
              <class>Boolean</class>
            </datatype>
          </type>
          <precond>
            <code proglang="perl">defined $infile</code>
            <code proglang="python">infile is not None</code>
          </precond>
          <vdef>
            <value>0</value>
          </vdef>
          <format>
            <code proglang="perl">( $value ) ? " -of $infile.fa" : ""</code>
            <code proglang="python">("", " -of "+ infile.split('.')[0] + ".fa ")[ value ]</code>
          </format>
          <argpos>10</argpos>
        </parameter>
        <parameter isout="1">
          <name>fastaout</name>
          <prompt lang="en">Output in fasta format</prompt>
          <type>
            <datatype>
              <class>Alignment</class>
            </datatype>
            <dataFormat>FASTA</dataFormat>
          </type>
          <precond>
            <code proglang="perl">$fasta</code>
            <code proglang="python">fasta</code>
          </precond>
          <filenames>
            <code proglang="perl">"$infile.fa"</code>
            <code proglang="python">infile.split('.')[0] + ".fa"</code>
          </filenames>
        </parameter>
        <parameter>
          <name>html</name>
          <prompt lang="en">Output in html format (-oh)</prompt>
          <type>
            <datatype>
              <class>Boolean</class>
            </datatype>
          </type>
          <precond>
            <code proglang="perl">defined $infile</code>
            <code proglang="python">infile is not None</code>
          </precond>
          <vdef>
            <value>0</value>
          </vdef>
          <format>
            <code proglang="perl">( $value ) ? " -oh $infile.html" : ""</code>
            <code proglang="python">("", " -oh "+ infile.split('.')[0] + ".html ")[ value ]</code>
          </format>
          <argpos>11</argpos>
        </parameter>
        <parameter isout="1">
          <name>htmlout</name>
          <prompt lang="en">Output in html format</prompt>
          <type>
            <datatype>
              <class>Report</class>
            </datatype>
          </type>
          <precond>
            <code proglang="perl">$html</code>
            <code proglang="python">html</code>
          </precond>
          <filenames>
            <code proglang="perl">"$infile.html"</code>
            <code proglang="python">infile.split('.')[0] + ".html"</code>
          </filenames>
        </parameter>
      </parameters>
    </paragraph>
  </parameters>
</program>