/usr/share/octave/packages/communications-1.2.0/minpol.m is in octave-communications-common 1.2.0-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 | ## Copyright (C) 2002 David Bateman
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {} minpol (@var{v})
##
## Finds the minimum polynomial for elements of a Galois Field. For a
## vector @var{v} with @math{N} components, representing @math{N} values
## in a Galois Field GF(2^@var{m}), return the minimum polynomial in GF(2)
## representing those values.
## @end deftypefn
function r = minpol (v)
if (nargin != 1)
print_usage ();
endif
if (!isgalois (v))
error ("minpol: V must be a Galois field scalar or vector");
endif
if (min (size (v)) > 1 || nargin != 1)
print_usage ();
endif
n = length (v);
m = v.m;
prim_poly = v.prim_poly;
r = zeros (n, m + 1);
## Find cosets of GF(2^m) and convert from cell array to matrix
cyclocoset = cosets (m, prim_poly);
cyclomat = zeros (max (size (cyclocoset)), m);
for j = 1:max (size (cyclocoset))
cyclomat(j,1:length (cyclocoset{j})) = cyclocoset{j};
endfor
for j = 1:n
if (v(j) == 0)
## Special case
r(j,m-1) = 1;
else
## Find the coset within which the current element falls
[rc, ignored] = find (cyclomat == v(j));
rv = cyclomat(rc,:);
## Create the minimum polynomial from its roots
ptmp = gf ([1, rv(1)], m, prim_poly);
for i = 2:length (rv)
ptmp = conv (ptmp, [1, rv(i)]);
endfor
## Need to left-shift polynomial to divide by x while can
i = 0;
while (!ptmp(m+1-i))
i = i + 1;
endwhile
ptmp = [zeros(1, i), ptmp(1:m+1-i)];
r(j,:) = ptmp;
endif
endfor
## Ok, now put the return value into GF(2)
r = gf (r, 1);
endfunction
%% Test input validation
%!error minpol ()
%!error minpol (1)
%!error minpol (1, 2)
|