/usr/share/octave/packages/communications-1.2.0/riceenco.m is in octave-communications-common 1.2.0-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 | ## Copyright (C) 2006 Muthiah Annamalai <muthiah.annamalai@uta.edu>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {} riceenco (@var{sig}, @var{K})
##
## Returns the Rice encoded signal using @var{K} or optimal K .
## Default optimal K is chosen between 0-7. Currently no other way
## to increase the range except to specify explicitly. Also returns
## @var{K} parameter used (in case it were to be chosen optimally)
## and @var{Ltot} the total length of output code in bits.
## This function uses a @var{K} if supplied or by default chooses
## the optimal K for encoding signal vector into a rice coded vector.
## A restrictions is that a signal set must strictly be non-negative.
## The Rice algorithm is used to encode the data into unary coded
## quotient part which is represented as a set of 1's separated from
## the K-part (binary) using a zero. This scheme doesn't need any
## kind of dictionaries and its close to O(N), but this implementation
## *may be* sluggish, though correct.
##
## Reference: Solomon Golomb, Run length Encodings, 1966 IEEE Trans
## Info' Theory
##
## An example of the use of @code{riceenco} is
## @example
## @group
## riceenco (1:4)
## @result{} @{[0 1], [1 0 0], [1 0 1], [1 1 0 0]@}
## riceenco (1:10, 2)
## @result{} @{[0 0 1], [0 1 0], [0 1 1], [1 0 0 0],
## [1 0 0 1], [1 0 1 0], [1 0 1 1], [1 1 0 0 0],
## [1 1 0 0 1], [1 1 0 1 0]@}
## @end group
## @end example
## @seealso{ricedeco}
## @end deftypefn
function [rcode, K, Ltot] = riceenco (sig, K)
if (nargin < 1 || nargin > 2)
print_usage ();
elseif (nargin < 2)
use_optimal_k = 1;
else
use_optimal_k = 0;
endif
if (min (sig) < 0)
error ("riceenco: all elements of SIG must be non-negative numbers");
endif
L = length (sig);
## compute the optimal rice parameter.
if (use_optimal_k)
k_opt = 0;
len_past = sum (sig) + L + k_opt*L;
quot = sig;
for k = 1:7
k_pow_2 = 2**k;
quot_k = floor (sig./k_pow_2);
len = sum (quot_k)+L+k*L;
if (len < len_past)
len_past = len;
k_opt = k;
rem = mod (sig, k_pow_2);
quot = quot_k;
endif
endfor
Ltot = len_past;
K = k_opt;
K_pow_2 = 2**K;
else
K_pow_2 = 2**K;
quot = floor (sig./K_pow_2);
rem = mod (sig, K_pow_2);
endif
for j = 1:L
rice_part = zeros (1, K);
##
## How can we eliminate this loop?
## I essentially need to get the binary
## representation of rem(j) in the rice_part(i)
##
for i = K:-1:1
rice_part(i) = mod (rem(j), 2);
rem(j) = floor (rem(j)/2);
endfor
rcode{j} = [ones(1, quot(j)) 0 rice_part];
endfor
Ltot = sum (quot) + L + K*L;
endfunction
%!assert (riceenco (1:4, 2), {[0 0 1], [0 1 0], [0 1 1], [1 0 0 0]})
%% Test input validation
%!error riceenco ()
%!error riceenco (1, 2, 3)
%!error riceenco (-1)
|