This file is indexed.

/usr/share/octave/packages/communications-1.2.0/rsgenpoly.m is in octave-communications-common 1.2.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
## Copyright (C) 2003 David Bateman
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {@var{g} =} rsgenpoly (@var{n}, @var{k})
## @deftypefnx {Function File} {@var{g} =} rsgenpoly (@var{n}, @var{k}, @var{p})
## @deftypefnx {Function File} {@var{g} =} rsgenpoly (@var{n}, @var{k}, @var{p}, @var{b}, @var{s})
## @deftypefnx {Function File} {@var{g} =} rsgenpoly (@var{n}, @var{k}, @var{p}, @var{b})
## @deftypefnx {Function File} {[@var{g}, @var{t}] =} rsgenpoly (@dots{})
##
## Creates a generator polynomial for a Reed-Solomon coding with message
## length of @var{k} and codelength of @var{n}. @var{n} must be greater
## than @var{k} and their difference must be even. The generator polynomial
## is returned on @var{g} as a polynomial over the Galois Field GF(2^@var{m})
## where @var{n} is equal to @code{2^@var{m}-1}. If @var{m} is not integer
## the next highest integer value is used and a generator for a shorten
## Reed-Solomon code is returned.
##
## The elements of @var{g} represent the coefficients of the polynomial in
## descending order. If the length of @var{g} is lg, then the generator
## polynomial is given by
## @tex
## $$
## g_0 x^{lg-1} + g_1 x^{lg-2} + \cdots + g_{lg-1} x + g_lg.
## $$
## @end tex
## @ifnottex
##
## @example
## @var{g}(0) * x^(lg-1) + @var{g}(1) * x^(lg-2) + ... + @var{g}(lg-1) * x + @var{g}(lg).
## @end example
## @end ifnottex
##
## If @var{p} is defined then it is used as the primitive polynomial of the
## Galois Field GF(2^@var{m}). The default primitive polynomial will be used
## if @var{p} is equal to [].
##
## The variables @var{b} and @var{s} determine the form of the generator
## polynomial in the following manner.
## @tex
## $$
## g = (x - A^{bs}) (x - A^{(b+1)s})  \cdots (x - A ^{(b+2t-1)s}).
## $$
## @end tex
## @ifnottex
##
## @example
## @var{g} = (@var{x} - A^(@var{b}*@var{s})) * (@var{x} - A^((@var{b}+1)*@var{s})) * ... * (@var{x} - A^((@var{b}+2*@var{t}-1)*@var{s})).
## @end example
## @end ifnottex
##
## where @var{t} is @code{(@var{n}-@var{k})/2}, and A is the primitive element
## of the Galois Field. Therefore @var{b} is the first consecutive root of the
## generator polynomial and @var{s} is the primitive element to generate the
## polynomial roots.
##
## If requested the variable @var{t}, which gives the error correction
## capability of the Reed-Solomon code.
## @seealso{gf, rsenc, rsdec}
## @end deftypefn

function [g, t] = rsgenpoly (n, k, _prim, _b, _s)

  if (nargin < 2 || nargin > 5)
    print_usage ();
  endif

  if (! (isscalar (n) && n == fix (n) && n > 2))
    error ("rsgenpoly: N must be an integer greater than 2");
  endif

  if (! (isscalar (k) && k == fix (k) && k > 0))
    error ("rsgenpoly: K must be a non-negative integer");
  endif

  if ((n-k)/2 != fix ((n-k)/2))
    error ("rsgenpoly: N-K must be an even integer");
  endif

  m = ceil (log2 (n+1));
  ## Adjust n and k if n not equal to 2^m-1
  dif = 2^m - 1 - n;
  n = n + dif;
  k = k + dif;

  prim = 0;
  if (nargin > 2)
    if (isempty (_prim))
      prim = 0;
    else
      prim = _prim;
    endif
  endif

  if (! (isscalar (prim) && prim == fix (prim) && prim >= 0))
    error ("rsgenpoly: P must be an integer representing a primitive polynomial");
  endif

  if (prim != 0)
    if (!isprimitive (prim))
      error ("rsgenpoly: P must be an integer representing a primitive polynomial");
    endif

    if (prim < 2^m || prim > 2^(m+1))
      error ("rsgenpoly: P must be a primitive polynomial with order 2^M");
    endif
  endif

  b = 1;
  if (nargin > 3)
    b = _b;
  endif

  if (! (isscalar (b) && b == fix (b) && b >= 0))
    error ("rsgenpoly: B must be a non-negative integer");
  endif

  s = 1;
  if (nargin > 4)
    s = _s;
  endif

  if (! (isscalar (s) && s == fix (s) && s >= 0))
    error ("rsgenpoly: S must be a non-negative integer");
  endif

  alph = gf (2, m, prim);
  t = (n - k) / 2;

  g = gf (1, m, prim);
  for i = 1:2*t
    g = conv (g, gf ([1, alph^((b+i-1)*s)], m, prim));
  endfor

endfunction

%% Test input validation
%!error rsgenpoly ()
%!error rsgenpoly (1)
%!error rsgenpoly (1, 2, 3, 4, 5, 6)
%!error rsgenpoly (1, 2)
%!error rsgenpoly (2, 0)
%!error rsgenpoly (4, 3)