This file is indexed.

/usr/share/octave/packages/communications-1.2.0/systematize.m is in octave-communications-common 1.2.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
## Copyright (C) 2007 Muthiah Annamalai <muthiah.annamalai@uta.edu>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} {} systematize (@var{G})
##
## Given @var{G}, extract P parity check matrix. Assume row-operations in GF(2).
## @var{G} is of size KxN, when decomposed through row-operations into a @var{I} of size KxK
## identity matrix, and a parity check matrix @var{P} of size Kx(N-K).
##
## Most arbitrary code with a given generator matrix @var{G}, can be converted into its
## systematic form using this function.
##
## This function returns 2 values, first is default being @var{Gx} the systematic version of
## the @var{G} matrix, and then the parity check matrix @var{P}.
##
## @example
## @group
## g = [1 1 1 1; 1 1 0 1; 1 0 0 1];
## [gx, p] = systematize (g);
##     @result{} gx = [1 0 0 1; 0 1 0 0; 0 0 1 0];
##     @result{} p = [1 0 0];
## @end group
## @end example
## @seealso{bchpoly, biterr}
## @end deftypefn

function [G, P] = systematize (G)

  if (nargin != 1)
    print_usage ();
  endif

  [K, N] = size (G);

  if (K >= N)
    error ("systematize: G must be a KxN matrix, with K < N");
  endif

  ##
  ## gauss-jordan echelon formation,
  ## and then back-operations to get I of size KxK
  ## remaining is the P matrix.
  ##

  for row = 1:K

    ##
    ## pick a pivot for this row, by finding the
    ## first of remaining rows that have non-zero element
    ## in the pivot.
    ##

    found_pivot = 0;
    if (G(row,row) > 0)
      found_pivot = 1;
    else
      ##
      ## next step of Gauss-Jordan, you need to
      ## re-sort the remaining rows, such that their
      ## pivot element is non-zero.
      ##
      for idx = row+1:K
        if (G(idx,row) > 0)
          tmp = G(row,:);
          G(row,:) = G(idx,:);
          G(idx,:) = tmp;
          found_pivot = 1;
          break;
        endif
      endfor
    endif

    ##
    ## some linearly dependent problems:
    ##
    if (!found_pivot)
      error ("systematize: could not systematize matrix G");
      return
    endif

    ##
    ## Gauss-Jordan method:
    ## pick pivot element, then remove it
    ## from the rest of the rows.
    ##
    for idx = row+1:K
      if (G(idx,row) > 0)
        G(idx,:) = mod (G(idx,:) + G(row,:), 2);
      endif
    endfor

  endfor

  ##
  ## Now work-backward.
  ##
  for row = K:-1:2
    for idx = row-1:-1:1
      if (G(idx,row) > 0)
        G(idx,:) = mod (G(idx,:) + G(row,:), 2);
      endif
    endfor
  endfor

  #I = G(:,1:K);
  P = G(:,K+1:end);

endfunction

%% Test input validation
%!error systematize ()
%!error systematize (1, 2)
%!error systematize (eye (3))