/usr/share/octave/packages/ga-0.10.0/ga.m is in octave-ga 0.10.0-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 | ## Copyright (C) 2008, 2010, 2012 Luca Favatella <slackydeb@gmail.com>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; If not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn{Function File} {@var{x} =} ga (@var{fitnessfcn}, @var{nvars})
## @deftypefnx{Function File} {@var{x} =} ga (@var{fitnessfcn}, @var{nvars}, @var{A}, @var{b})
## @deftypefnx{Function File} {@var{x} =} ga (@var{fitnessfcn}, @var{nvars}, @var{A}, @var{b}, @var{Aeq}, @var{beq})
## @deftypefnx{Function File} {@var{x} =} ga (@var{fitnessfcn}, @var{nvars}, @var{A}, @var{b}, @var{Aeq}, @var{beq}, @var{LB}, @var{UB})
## @deftypefnx{Function File} {@var{x} =} ga (@var{fitnessfcn}, @var{nvars}, @var{A}, @var{b}, @var{Aeq}, @var{beq}, @var{LB}, @var{UB}, @var{nonlcon})
## @deftypefnx{Function File} {@var{x} =} ga (@var{fitnessfcn}, @var{nvars}, @var{A}, @var{b}, @var{Aeq}, @var{beq}, @var{LB}, @var{UB}, @var{nonlcon}, @var{options})
## @deftypefnx{Function File} {@var{x} =} ga (@var{problem})
## @deftypefnx{Function File} {[@var{x}, @var{fval}] =} ga (@dots{})
## @deftypefnx{Function File} {[@var{x}, @var{fval}, @var{exitflag}] =} ga (@dots{})
## @deftypefnx{Function File} {[@var{x}, @var{fval}, @var{exitflag}, @var{output}] =} ga (@dots{})
## @deftypefnx{Function File} {[@var{x}, @var{fval}, @var{exitflag}, @var{output}, @var{population}] =} ga (@dots{})
## @deftypefnx{Function File} {[@var{x}, @var{fval}, @var{exitflag}, @var{output}, @var{population}, @var{scores}] =} ga (@dots{})
## Find minimum of function using genetic algorithm.
##
## @strong{Inputs}
## @table @var
## @item fitnessfcn
## The objective function to minimize. It accepts a vector @var{x} of
## size 1-by-@var{nvars}, and returns a scalar evaluated at @var{x}.
## @item nvars
## The dimension (number of design variables) of @var{fitnessfcn}.
## @item options
## The structure of the optimization parameters; can be created using
## the @code{gaoptimset} function. If not specified, @code{ga} minimizes
## with the default optimization parameters.
## @item problem
## A structure containing the following fields:
## @itemize @bullet
## @item @code{fitnessfcn}
## @item @code{nvars}
## @item @code{Aineq}
## @item @code{Bineq}
## @item @code{Aeq}
## @item @code{Beq}
## @item @code{lb}
## @item @code{ub}
## @item @code{nonlcon}
## @item @code{randstate}
## @item @code{randnstate}
## @item @code{solver}
## @item @code{options}
## @end itemize
## @end table
##
## @strong{Outputs}
## @table @var
## @item x
## The local unconstrained found minimum to the objective function,
## @var{fitnessfcn}.
## @item fval
## The value of the fitness function at @var{x}.
## @end table
##
## @seealso{gaoptimset}
## @end deftypefn
## Author: Luca Favatella <slackydeb@gmail.com>
## Version: 6.0.1
function [x fval exitflag output population scores] = \
ga (fitnessfcn_or_problem,
nvars,
A = [], b = [],
Aeq = [], beq = [],
LB = [], UB = [],
nonlcon = [],
options = gaoptimset ())
if ((nargout > 6) ||
(nargin < 1) ||
(nargin == 3) ||
(nargin == 5) ||
(nargin == 7) ||
(nargin > 10))
print_usage ();
else
## retrieve the problem structure
if (nargin == 1)
problem = fitnessfcn_or_problem;
else
problem.fitnessfcn = fitnessfcn_or_problem;
problem.nvars = nvars;
problem.Aineq = A;
problem.Bineq = b;
problem.Aeq = Aeq;
problem.Beq = beq;
problem.lb = LB;
problem.ub = UB;
problem.nonlcon = nonlcon;
problem.randstate = rand ("state");
problem.randnstate = randn ("state");
problem.solver = "ga";
problem.options = options;
endif
## call the function that manages the problem structure
[x fval exitflag output population scores] = __ga_problem__ (problem);
endif
endfunction
## number of input arguments
%!shared f, nvars
%! f = @rastriginsfcn;
%! nvars = 2;
%!error x = ga ()
%!error x = ga (f)
%!error x = ga (f, nvars, [])
%!error x = ga (f, nvars, [], [], [])
%!error x = ga (f, nvars, [], [], [], [], [])
%!error x = ga (f, nvars, [], [], [], [], [], [], @(x) [[], []], gaoptimset (), [])
## number of output arguments
# TODO
## type of arguments
%!function f = ff (nvars)
%! f = @(x) sum (x(:, 1:nvars) .** 2, 2);
%!error x = ga (ff (3), 2);
# TODO
# TODO: test that each field in the user-specified "problem" structure is checked
## flawless execution with right arguments
%!shared f, nvars
%! f = @rastriginsfcn;
%! nvars = 2;
%!function [C, Ceq] = nonlcon (x)
%! C = [];
%! Ceq = [];
%!test x = ga (f, nvars);
%!test x = ga (f, nvars, [], []);
%!test x = ga (f, nvars, ones (3, nvars), ones (3, 1));
%!test x = ga (f, nvars, [], [], [], []);
%!test x = ga (f, nvars, [], [], ones (4, nvars), ones (4, 1));
%!test x = ga (f, nvars, [], [], [], [], [], []);
%!test x = ga (f, nvars, [], [], [], [], - Inf (1, nvars), Inf (1, nvars));
%!test x = ga (f, nvars, [], [], [], [], - ones (1, nvars), ones (1, nvars));
%!test x = ga (f, nvars, [], [], [], [], [], [], @(x) [[], []]);
%!test x = ga (f, nvars, [], [], [], [], [], [], @nonlcon);
%!test x = ga (f, nvars, [], [], [], [], [], [], @(x) [[], []], gaoptimset ());
%!test # TODO: convert to error after implementing private ga-specific createOptimProblem. All fields in the user-specified structure should be checked
%! problem = struct ("fitnessfcn", @rastriginsfcn,
%! "nvars", 2,
%! "options", gaoptimset ());
%! x = ga (problem);
## flawless execution with any nvars
%!function f = ff (nvars)
%! f = @(x) sum (x(:, 1:nvars) .** 2, 2);
%!test
%! nvars = 1;
%! x = ga (ff (nvars), nvars);
%!test
%! nvars = 2;
%! x = ga (ff (nvars), nvars);
%!test
%! nvars = 3;
%! x = ga (ff (nvars), nvars);
## flawless execution with any supported optimization parameter
## different from the default value
%!shared f, nvars, default_options
%! f = @rastriginsfcn;
%! nvars = 2;
%! default_options = gaoptimset ();
%!function [C, Ceq] = nonlcon (x)
%! C = [];
%! Ceq = [];
%!test
%! x = ga (f, nvars, [], [], [], [], [], [], @nonlcon, default_options);
%!test # TODO: use non-default value
%! options = gaoptimset ("CreationFcn", @gacreationuniform);
%! x = ga (f, nvars, [], [], [], [], [], [], @nonlcon, options);
%!test # TODO: use non-default value
%! options = gaoptimset ("CrossoverFcn", @crossoverscattered);
%! x = ga (f, nvars, [], [], [], [], [], [], @nonlcon, options);
%!test
%! options = gaoptimset ("CrossoverFraction", rand);
%! x = ga (f, nvars, [], [], [], [], [], [], @nonlcon, options);
%!test
%! ps = getfield (default_options, "PopulationSize");
%! options = gaoptimset ("EliteCount", randi ([0, ps]));
%! x = ga (f, nvars, [], [], [], [], [], [], @nonlcon, options);
%!test
%! options = gaoptimset ("FitnessLimit", 1e-7);
%! x = ga (f, nvars, [], [], [], [], [], [], @nonlcon, options);
%!test # TODO: use non-default value
%! options = gaoptimset ("FitnessScalingFcn", @fitscalingrank);
%! x = ga (f, nvars, [], [], [], [], [], [], @nonlcon, options);
%!test
%! g = getfield (default_options, "Generations");
%! options = gaoptimset ("Generations", g + 1);
%! x = ga (f, nvars, [], [], [], [], [], [], @nonlcon, options);
%!test
%! ps = getfield (default_options, "PopulationSize");
%! ## Initial population can be partial
%! options_w_full_ip = \
%! gaoptimset ("InitialPopulation", rand (ps, nvars));
%! partial_ip = randi ([0, ps - 1]);
%! options_w_partial_ip = \
%! gaoptimset ("InitialPopulation", rand (partial_ip, nvars));
%! x = ga (f, nvars, [], [], [], [], [], [], @nonlcon, options_w_full_ip);
%! x = ga (f, nvars, [], [], [], [], [], [], @nonlcon, options_w_partial_ip);
%!test
%! ps = getfield (default_options, "PopulationSize");
%! ## Initial scores needs initial population
%!
%! options_w_full_ip_full_is = \
%! gaoptimset ("InitialPopulation", rand (ps, nvars),
%! "InitialScores", rand (ps, 1 ));
%! partial_ip = randi ([2, ps - 1]);
%! options_w_partial_ip_full_is = \
%! gaoptimset ("InitialPopulation", rand (partial_ip, nvars),
%! "InitialScores", rand (partial_ip, 1 ));
%!
%! ## Initial scores can be partial
%! partial_is_when_full_ip = randi ([1, ps - 1]);
%! partial_is_when_partial_ip = randi ([1, partial_ip - 1]);
%! options_w_full_ip_partial_is = \
%! gaoptimset ("InitialPopulation", rand (ps, nvars),
%! "InitialScores", rand (partial_is_when_full_ip, 1 ));
%! options_w_partial_ip_partial_is = \
%! gaoptimset ("InitialPopulation", rand (partial_ip, nvars),
%! "InitialScores", rand (partial_is_when_partial_ip, 1 ));
%!
%! x = ga (f, nvars, [], [], [], [], [], [], @nonlcon,
%! options_w_full_ip_full_is);
%! x = ga (f, nvars, [], [], [], [], [], [], @nonlcon,
%! options_w_partial_ip_full_is);
%! x = ga (f, nvars, [], [], [], [], [], [], @nonlcon,
%! options_w_full_ip_partial_is);
%! x = ga (f, nvars, [], [], [], [], [], [], @nonlcon,
%! options_w_partial_ip_partial_is);
%!test # TODO: use non-default value
%! options = gaoptimset ("MutationFcn", {@mutationgaussian, 1, 1});
%! x = ga (f, nvars, [], [], [], [], [], [], @nonlcon, options);
%!test
%! options = gaoptimset ("PopInitRange", [-2; 2]);
%! x = ga (f, nvars, [], [], [], [], [], [], @nonlcon, options);
%!test
%! options = gaoptimset ("PopulationSize", 200);
%! x = ga (f, nvars, [], [], [], [], [], [], @nonlcon, options);
%!test # TODO: use non-default value
%! options = gaoptimset ("SelectionFcn", @selectionstochunif);
%! x = ga (f, nvars, [], [], [], [], [], [], @nonlcon, options);
%!test # TODO: use non-default value
%! options = gaoptimset ("TimeLimit", Inf);
%! x = ga (f, nvars, [], [], [], [], [], [], @nonlcon, options);
%!error # TODO: this should become test
%! options = gaoptimset ("UseParallel", "always");
%! x = ga (f, nvars, [], [], [], [], [], [], @nonlcon, options);
%!test
%! options = gaoptimset ("Vectorized", "on");
%! x = ga (f, nvars, [], [], [], [], [], [], @nonlcon, options);
## error with conflicting optimization parameters: population size et al.
%!shared f, nvars
%! f = @rastriginsfcn;
%! nvars = 2;
%!function [C, Ceq] = nonlcon (x)
%! C = [];
%! Ceq = [];
%!error # Elite count cannot be greater than the population size
%! ps = 3;
%! bad_options = gaoptimset ("PopulationSize", ps,
%! "EliteCount", ps + 1);
%! x = ga (f, nvars, [], [], [], [], [], [], @nonlcon, bad_options);
%!error # The number of individuals in the initial population cannot be greater of the population size
%! ps = 3;
%! bad_options = gaoptimset ("PopulationSize", ps,
%! "InitialPopulation", zeros (ps + 1, nvars));
%! x = ga (f, nvars, [], [], [], [], [], [], @nonlcon, bad_options);
%!error # Initial scores cannot be specified without specifying the initial population too
%! bad_options = gaoptimset ("InitialScores", zeros (3, 1));
%! x = ga (f, nvars, [], [], [], [], [], [], @nonlcon, bad_options);
%!error # The number of initial scores specified cannot be greater of the number of individuals in the initial population
%! ip = 3;
%! bad_options = gaoptimset ("InitialPopulation", zeros (ip, nvars),
%! "InitialScores", zeros (ip + 1, 1));
%! x = ga (f, nvars, [], [], [], [], [], [], @nonlcon, bad_options);
## error with vectorized evaluation of objective function. Vectorized
## objective functions are better because can be evaluated both as
## serial and vectorized.
%!shared nvars
%! nvars = 2;
%!function [C, Ceq] = nonlcon (x)
%! C = [];
%! Ceq = [];
%!function f = ff (nvars)
%! f = @(x) sum (x(:, 1:nvars) .** 2, 2);
%!function f_not_vectorized = ff_not_vectorized (nvars)
%! f_not_vectorized = @(x) sum (x(1:nvars) .** 2);
%!test # A non-vectorized objective function works when no vectorization is required
%! f = ff_not_vectorized (nvars);
%! options = gaoptimset ("Vectorized", "off");
%! x = ga (f, nvars, [], [], [], [], [], [], @nonlcon, options);
%!error # A non-vectorized objective function does not work when vectorization is required
%! f = ff_not_vectorized (nvars);
%! options = gaoptimset ("Vectorized", "on");
%! x = ga (f, nvars, [], [], [], [], [], [], @nonlcon, options);
%!test # A vectorized objective function works when no vectorization is required
%! f = ff (nvars);
%! options = gaoptimset ("Vectorized", "off");
%! x = ga (f, nvars, [], [], [], [], [], [], @nonlcon, options);
%!test # A vectorized objective function works when vectorization is required
%! f = ff (nvars);
%! options = gaoptimset ("Vectorized", "on");
%! x = ga (f, nvars, [], [], [], [], [], [], @nonlcon, options);
## error with conflicting optimization parameters: parallel and
## vectorized evaluation of objective function
%!shared f, nvars
%! f = @rastriginsfcn;
%! nvars = 2;
%!function [C, Ceq] = nonlcon (x)
%! C = [];
%! Ceq = [];
%!test
%! options = gaoptimset ("UseParallel", "never",
%! "Vectorized", "off");
%! x = ga (f, nvars, [], [], [], [], [], [], @nonlcon, options);
%!error # TODO: this should become test
%! options = gaoptimset ("UseParallel", "always",
%! "Vectorized", "off");
%! x = ga (f, nvars, [], [], [], [], [], [], @nonlcon, options);
%!error
%! bad_options = gaoptimset ("UseParallel", "garbage",
%! "Vectorized", "off");
%! x = ga (f, nvars, [], [], [], [], [], [], @nonlcon, bad_options);
%!test
%! options = gaoptimset ("UseParallel", "never",
%! "Vectorized", "on");
%! x = ga (f, nvars, [], [], [], [], [], [], @nonlcon, options);
%!warning
%! bad_options = gaoptimset ("UseParallel", "always",
%! "Vectorized", "on");
%! x = ga (f, nvars, [], [], [], [], [], [], @nonlcon, bad_options);
%!warning
%! bad_options = gaoptimset ("UseParallel", "garbage",
%! "Vectorized", "on");
%! x = ga (f, nvars, [], [], [], [], [], [], @nonlcon, bad_options);
%!error
%! bad_options = gaoptimset ("UseParallel", "never",
%! "Vectorized", "garbage");
%! x = ga (f, nvars, [], [], [], [], [], [], @nonlcon, bad_options);
%!error
%! bad_options = gaoptimset ("UseParallel", "always",
%! "Vectorized", "garbage");
%! x = ga (f, nvars, [], [], [], [], [], [], @nonlcon, bad_options);
%!error
%! bad_options = gaoptimset ("UseParallel", "garbage",
%! "Vectorized", "garbage");
%! x = ga (f, nvars, [], [], [], [], [], [], @nonlcon, bad_options);
|