This file is indexed.

/usr/share/octave/packages/splines-1.2.7/csaps.m is in octave-splines 1.2.7-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
## Copyright (C) 2012-2013 Nir Krakauer
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; If not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn{Function File}{[@var{yi} @var{p}] =} csaps(@var{x}, @var{y}, @var{p}, @var{xi}, @var{w}=[])
## @deftypefnx{Function File}{[@var{pp} @var{p}] =} csaps(@var{x}, @var{y}, @var{p}, [], @var{w}=[])
##
## Cubic spline approximation (smoothing)@*
## approximate [@var{x},@var{y}], weighted by @var{w} (inverse variance; if not given, equal weighting is assumed), at @var{xi}
##
## The chosen cubic spline with natural boundary conditions @var{pp}(@var{x}) minimizes @var{p} Sum_i @var{w}_i*(@var{y}_i - @var{pp}(@var{x}_i))^2  +  (1-@var{p}) Int @var{pp}''(@var{x}) d@var{x}  
##
## Outside the range of @var{x}, the cubic spline is a straight line
##
## @var{x} and @var{w} should be n by 1 in size; @var{y} should be n by m; @var{xi} should be k by 1; the values in @var{x} should be distinct and in ascending order; the values in @var{w} should be nonzero
##
## @table @asis
## @item @var{p}=0
##       maximum smoothing: straight line
## @item @var{p}=1
##       no smoothing: interpolation
## @item @var{p}<0 or not given
##       an intermediate amount of smoothing is chosen (such that the smoothing term and the interpolation term are of the same magnitude)
##       (csaps_sel provides other methods for automatically selecting the smoothing parameter @var{p}.)
## @end table
##
## Reference: Carl de Boor (1978), A Practical Guide to Splines, Springer, Chapter XIV
##
## @end deftypefn
## @seealso{spline, csapi, ppval, dedup, bin_values, csaps_sel}

## Author: Nir Krakauer <nkrakauer@ccny.cuny.edu>

function [ret,p]=csaps(x,y,p,xi,w)

warning ("off", "Octave:broadcast", "local");

  if(nargin < 5)
    w = [];
    if(nargin < 4)
      xi = [];
      if(nargin < 3)
	p = [];
      endif
    endif
  endif

  if(columns(x) > 1)
    x = x';
    y = y';
    w = w';
  endif

  if any (isnan ([x y w](:)) )
    error('NaN values in inputs; pre-process to remove them')
  endif

  h = diff(x);
  if any(h <= 0)
	  error('x must be strictly increasing; pre-process to achieve this')
  endif


  [n m] = size(y); #should also be that n = numel(x);
  
  if isempty(w)
    w = ones(n, 1);
  end


  #R = spdiags([h(1:end-1) 2*(h(1:end-1) + h(2:end)) h(2:end)], [-1 0 1], n-2, n-2);
  R = spdiags([h(2:end) 2*(h(1:end-1) + h(2:end)) h(1:end-1)], [-1 0 1], n-2, n-2); #this is the correct expression

  QT = spdiags([1 ./ h(1:end-1) -(1 ./ h(1:end-1) + 1 ./ h(2:end)) 1 ./ h(2:end)], [0 1 2], n-2, n);
  
## if not given, choose p so that trace(6*(1-p)*QT*diag(1 ./ w)*QT') = trace(pR)
  if isempty(p) || (p < 0)
  	r = full(6*trace(QT*diag(1 ./ w)*QT') / trace(R));
  	p = r ./ (1 + r);
  endif

## solve for the scaled second derivatives u and for the function values a at the knots (if p = 1, a = y; if p = 0, u(:) = 0) 
## QT*y can also be written as (y(3:n, :) - y(2:(n-1), :)) ./ h(2:end) - (y(2:(n-1), :) - y(1:(n-2), :)) ./ h(1:(end-1))
  u = (6*(1-p)*QT*diag(1 ./ w)*QT' + p*R) \ (QT*y);
  a = y - 6*(1-p)*diag(1 ./ w)*QT'*u;

  
## derivatives for the piecewise cubic spline  
  aa = bb = cc = dd = zeros (n+1, m);
  aa(2:end, :) = a;
  cc(3:n, :) = 6*p*u; #second derivative at endpoints is 0 [natural spline]
  dd(2:n, :) = diff(cc(2:(n+1), :)) ./ h;
  %bb(2:n, :) = diff(a) ./ h - (cc(2:n, :)/2).*h - (dd(2:n, :)/6).*(h.^2);
  bb(2:n, :) = diff(a) ./ h - (h/3) .* (cc(2:n, :) + cc(3:(n+1), :)/2);


## note: add knots to either end of spline pp-form to ensure linear extrapolation
  xminus = x(1) - eps(x(1));
  xplus = x(end) + eps(x(end));
  x = [xminus; x; xplus];  
  slope_minus = bb(2, :);
  slope_plus = bb(n, :) + cc(n, :)*h(n-1) + (dd(n, :)/2)*h(n-1)^2;
  bb(1, :) = slope_minus; #linear extension of splines
  bb(n + 1, :) = slope_plus;
  aa(1, :) = a(1, :) - eps(x(1))*bb(1, :);
  
  ret = mkpp (x, cat (2, dd'(:)/6, cc'(:)/2, bb'(:), aa'(:)), size(y, 2));

  if ~isempty (xi)
    ret = ppval (ret, xi);
  endif

endfunction

%!shared x,y, xi
%! x = ([1:10 10.5 11.3])'; y = sin(x); xi = linspace(min(x), max(x), 30);
%!assert (csaps(x,y,1,x), y, 10*eps);
%!assert (csaps(x,y,1,x'), y', 10*eps);
%!assert (csaps(x',y',1,x'), y', 10*eps);
%!assert (csaps(x',y',1,x), y, 10*eps);
%!assert (csaps(x,[y 2*y],1,x)', [y 2*y], 10*eps);
%!assert (csaps(x,y,1,xi), ppval(csape(x, y, "variational"), xi), eps);
%!assert (csaps(x,y,0,xi), polyval(polyfit(x, y, 1), xi), 10*eps);