/usr/share/octave/packages/statistics-1.2.3/hmmviterbi.m is in octave-statistics 1.2.3-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 | ## Copyright (C) 2006, 2007 Arno Onken <asnelt@asnelt.org>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {@var{vpath} =} hmmviterbi (@var{sequence}, @var{transprob}, @var{outprob})
## @deftypefnx {Function File} {} hmmviterbi (@dots{}, 'symbols', @var{symbols})
## @deftypefnx {Function File} {} hmmviterbi (@dots{}, 'statenames', @var{statenames})
## Use the Viterbi algorithm to find the Viterbi path of a hidden Markov
## model given a sequence of outputs. The model assumes that the generation
## starts in state @code{1} at step @code{0} but does not include step
## @code{0} in the generated states and sequence.
##
## @subheading Arguments
##
## @itemize @bullet
## @item
## @var{sequence} is the vector of length @var{len} of given outputs. The
## outputs must be integers ranging from @code{1} to
## @code{columns (outprob)}.
##
## @item
## @var{transprob} is the matrix of transition probabilities of the states.
## @code{transprob(i, j)} is the probability of a transition to state
## @code{j} given state @code{i}.
##
## @item
## @var{outprob} is the matrix of output probabilities.
## @code{outprob(i, j)} is the probability of generating output @code{j}
## given state @code{i}.
## @end itemize
##
## @subheading Return values
##
## @itemize @bullet
## @item
## @var{vpath} is the vector of the same length as @var{sequence} of the
## estimated hidden states. The states are integers ranging from @code{1} to
## @code{columns (transprob)}.
## @end itemize
##
## If @code{'symbols'} is specified, then @var{sequence} is expected to be a
## sequence of the elements of @var{symbols} instead of integers ranging
## from @code{1} to @code{columns (outprob)}. @var{symbols} can be a cell array.
##
## If @code{'statenames'} is specified, then the elements of
## @var{statenames} are used for the states in @var{vpath} instead of
## integers ranging from @code{1} to @code{columns (transprob)}.
## @var{statenames} can be a cell array.
##
## @subheading Examples
##
## @example
## @group
## transprob = [0.8, 0.2; 0.4, 0.6];
## outprob = [0.2, 0.4, 0.4; 0.7, 0.2, 0.1];
## [sequence, states] = hmmgenerate (25, transprob, outprob)
## vpath = hmmviterbi (sequence, transprob, outprob)
## @end group
##
## @group
## symbols = @{'A', 'B', 'C'@};
## statenames = @{'One', 'Two'@};
## [sequence, states] = hmmgenerate (25, transprob, outprob,
## 'symbols', symbols, 'statenames', statenames)
## vpath = hmmviterbi (sequence, transprob, outprob,
## 'symbols', symbols, 'statenames', statenames)
## @end group
## @end example
##
## @subheading References
##
## @enumerate
## @item
## Wendy L. Martinez and Angel R. Martinez. @cite{Computational Statistics
## Handbook with MATLAB}. Appendix E, pages 547-557, Chapman & Hall/CRC,
## 2001.
##
## @item
## Lawrence R. Rabiner. A Tutorial on Hidden Markov Models and Selected
## Applications in Speech Recognition. @cite{Proceedings of the IEEE},
## 77(2), pages 257-286, February 1989.
## @end enumerate
## @end deftypefn
## Author: Arno Onken <asnelt@asnelt.org>
## Description: Viterbi path of a hidden Markov model
function vpath = hmmviterbi (sequence, transprob, outprob, varargin)
# Check arguments
if (nargin < 3 || mod (length (varargin), 2) != 0)
print_usage ();
endif
if (! ismatrix (transprob))
error ("hmmviterbi: transprob must be a non-empty numeric matrix");
endif
if (! ismatrix (outprob))
error ("hmmviterbi: outprob must be a non-empty numeric matrix");
endif
len = length (sequence);
# nstate is the number of states of the hidden Markov model
nstate = rows (transprob);
# noutput is the number of different outputs that the hidden Markov model
# can generate
noutput = columns (outprob);
# Check whether transprob and outprob are feasible for a hidden Markov model
if (columns (transprob) != nstate)
error ("hmmviterbi: transprob must be a square matrix");
endif
if (rows (outprob) != nstate)
error ("hmmviterbi: outprob must have the same number of rows as transprob");
endif
# Flag for symbols
usesym = false;
# Flag for statenames
usesn = false;
# Process varargin
for i = 1:2:length (varargin)
# There must be an identifier: 'symbols' or 'statenames'
if (! ischar (varargin{i}))
print_usage ();
endif
# Upper case is also fine
lowerarg = lower (varargin{i});
if (strcmp (lowerarg, 'symbols'))
if (length (varargin{i + 1}) != noutput)
error ("hmmviterbi: number of symbols does not match number of possible outputs");
endif
usesym = true;
# Use the following argument as symbols
symbols = varargin{i + 1};
# The same for statenames
elseif (strcmp (lowerarg, 'statenames'))
if (length (varargin{i + 1}) != nstate)
error ("hmmviterbi: number of statenames does not match number of states");
endif
usesn = true;
# Use the following argument as statenames
statenames = varargin{i + 1};
else
error ("hmmviterbi: expected 'symbols' or 'statenames' but found '%s'", varargin{i});
endif
endfor
# Transform sequence from symbols to integers if necessary
if (usesym)
# sequenceint is used to build the transformed sequence
sequenceint = zeros (1, len);
for i = 1:noutput
# Search for symbols(i) in the sequence, isequal will have 1 at
# corresponding indices; i is the right integer for that symbol
isequal = ismember (sequence, symbols(i));
# We do not want to change sequenceint if the symbol appears a second
# time in symbols
if (any ((sequenceint == 0) & (isequal == 1)))
isequal *= i;
sequenceint += isequal;
endif
endfor
if (! all (sequenceint))
index = max ((sequenceint == 0) .* (1:len));
error (["hmmviterbi: sequence(" int2str (index) ") not in symbols"]);
endif
sequence = sequenceint;
else
if (! isvector (sequence) && ! isempty (sequence))
error ("hmmviterbi: sequence must be a vector");
endif
if (! all (ismember (sequence, 1:noutput)))
index = max ((ismember (sequence, 1:noutput) == 0) .* (1:len));
error (["hmmviterbi: sequence(" int2str (index) ") out of range"]);
endif
endif
# Each row in transprob and outprob should contain probabilities
# => scale so that the sum is 1
# A zero row remains zero
# - for transprob
s = sum (transprob, 2);
s(s == 0) = 1;
transprob = transprob ./ (s * ones (1, columns (transprob)));
# - for outprob
s = sum (outprob, 2);
s(s == 0) = 1;
outsprob = outprob ./ (s * ones (1, columns (outprob)));
# Store the path starting from i in spath(i, :)
spath = ones (nstate, len + 1);
# Set the first state for each path
spath(:, 1) = (1:nstate)';
# Store the probability of path i in spathprob(i)
spathprob = transprob(1, :);
# Find the most likely paths for the given output sequence
for i = 1:len
# Calculate the new probabilities of the continuation with each state
nextpathprob = ((spathprob' .* outprob(:, sequence(i))) * ones (1, nstate)) .* transprob;
# Find the paths with the highest probabilities
[spathprob, mindex] = max (nextpathprob);
# Update spath and spathprob with the new paths
spath = spath(mindex, :);
spath(:, i + 1) = (1:nstate)';
endfor
# Set vpath to the most likely path
# We do not want the last state because we do not have an output for it
[m, mindex] = max (spathprob);
vpath = spath(mindex, 1:len);
# Transform vpath into statenames if requested
if (usesn)
vpath = reshape (statenames(vpath), 1, len);
endif
endfunction
%!test
%! sequence = [1, 2, 1, 1, 1, 2, 2, 1, 2, 3, 3, 3, 3, 2, 3, 1, 1, 1, 1, 3, 3, 2, 3, 1, 3];
%! transprob = [0.8, 0.2; 0.4, 0.6];
%! outprob = [0.2, 0.4, 0.4; 0.7, 0.2, 0.1];
%! vpath = hmmviterbi (sequence, transprob, outprob);
%! expected = [1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1];
%! assert (vpath, expected);
%!test
%! sequence = {'A', 'B', 'A', 'A', 'A', 'B', 'B', 'A', 'B', 'C', 'C', 'C', 'C', 'B', 'C', 'A', 'A', 'A', 'A', 'C', 'C', 'B', 'C', 'A', 'C'};
%! transprob = [0.8, 0.2; 0.4, 0.6];
%! outprob = [0.2, 0.4, 0.4; 0.7, 0.2, 0.1];
%! symbols = {'A', 'B', 'C'};
%! statenames = {'One', 'Two'};
%! vpath = hmmviterbi (sequence, transprob, outprob, 'symbols', symbols, 'statenames', statenames);
%! expected = {'One', 'One', 'Two', 'Two', 'Two', 'One', 'One', 'One', 'One', 'One', 'One', 'One', 'One', 'One', 'One', 'Two', 'Two', 'Two', 'Two', 'One', 'One', 'One', 'One', 'One', 'One'};
%! assert (vpath, expected);
|