This file is indexed.

/usr/share/octave/packages/statistics-1.2.3/mnpdf.m is in octave-statistics 1.2.3-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
## Copyright (C) 2012  Arno Onken
##
## This program is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program.  If not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} {@var{y} =} mnpdf (@var{x}, @var{p})
## Compute the probability density function of the multinomial distribution.
##
## @subheading Arguments
##
## @itemize @bullet
## @item
## @var{x} is vector with a single sample of a multinomial distribution with
## parameter @var{p} or a matrix of random samples from multinomial
## distributions. In the latter case, each row of @var{x} is a sample from a
## multinomial distribution with the corresponding row of @var{p} being its
## parameter.
##
## @item
## @var{p} is a vector with the probabilities of the categories or a matrix
## with each row containing the probabilities of a multinomial sample.
## @end itemize
##
## @subheading Return values
##
## @itemize @bullet
## @item
## @var{y} is a vector of probabilites of the random samples @var{x} from the
## multinomial distribution with corresponding parameter @var{p}. The parameter
## @var{n} of the multinomial distribution is the sum of the elements of each
## row of @var{x}. The length of @var{y} is the number of columns of @var{x}.
## If a row of @var{p} does not sum to @code{1}, then the corresponding element
## of @var{y} will be @code{NaN}.
## @end itemize
##
## @subheading Examples
##
## @example
## @group
## x = [1, 4, 2];
## p = [0.2, 0.5, 0.3];
## y = mnpdf (x, p);
## @end group
##
## @group
## x = [1, 4, 2; 1, 0, 9];
## p = [0.2, 0.5, 0.3; 0.1, 0.1, 0.8];
## y = mnpdf (x, p);
## @end group
## @end example
##
## @subheading References
##
## @enumerate
## @item
## Wendy L. Martinez and Angel R. Martinez. @cite{Computational Statistics
## Handbook with MATLAB}. Appendix E, pages 547-557, Chapman & Hall/CRC, 2001.
##
## @item
## Merran Evans, Nicholas Hastings and Brian Peacock. @cite{Statistical
## Distributions}. pages 134-136, Wiley, New York, third edition, 2000.
## @end enumerate
## @end deftypefn

## Author: Arno Onken <asnelt@asnelt.org>
## Description: PDF of the multinomial distribution

function y = mnpdf (x, p)

  # Check arguments
  if (nargin != 2)
    print_usage ();
  endif

  if (! ismatrix (x) || any (x(:) < 0 | round (x(:) != x(:))))
    error ("mnpdf: x must be a matrix of non-negative integer values");
  endif
  if (! ismatrix (p) || any (p(:) < 0))
    error ("mnpdf: p must be a non-empty matrix with rows of probabilities");
  endif

  # Adjust input sizes
  if (! isvector (x) || ! isvector (p))
    if (isvector (x))
      x = x(:)';
    endif
    if (isvector (p))
      p = p(:)';
    endif
    if (size (x, 1) == 1 && size (p, 1) > 1)
      x = repmat (x, size (p, 1), 1);
    elseif (size (x, 1) > 1 && size (p, 1) == 1)
      p = repmat (p, size (x, 1), 1);
    endif
  endif
  # Continue argument check
  if (any (size (x) != size (p)))
    error ("mnpdf: x and p must have compatible sizes");
  endif

  # Count total number of elements of each multinomial sample
  n = sum (x, 2);
  # Compute probability density function of the multinomial distribution
  t = x .* log (p);
  t(x == 0) = 0;
  y = exp (gammaln (n+1) - sum (gammaln (x+1), 2) + sum (t, 2));
  # Set invalid rows to NaN
  k = (abs (sum (p, 2) - 1) > 1e-6);
  y(k) = NaN;

endfunction

%!test
%! x = [1, 4, 2];
%! p = [0.2, 0.5, 0.3];
%! y = mnpdf (x, p);
%! assert (y, 0.11812, 0.001);

%!test
%! x = [1, 4, 2; 1, 0, 9];
%! p = [0.2, 0.5, 0.3; 0.1, 0.1, 0.8];
%! y = mnpdf (x, p);
%! assert (y, [0.11812; 0.13422], 0.001);