/usr/share/octave/packages/statistics-1.2.3/mnrnd.m is in octave-statistics 1.2.3-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 | ## Copyright (C) 2012 Arno Onken
##
## This program is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program. If not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {@var{x} =} mnrnd (@var{n}, @var{p})
## @deftypefnx {Function File} {@var{x} =} mnrnd (@var{n}, @var{p}, @var{s})
## Generate random samples from the multinomial distribution.
##
## @subheading Arguments
##
## @itemize @bullet
## @item
## @var{n} is the first parameter of the multinomial distribution. @var{n} can
## be scalar or a vector containing the number of trials of each multinomial
## sample. The elements of @var{n} must be non-negative integers.
##
## @item
## @var{p} is the second parameter of the multinomial distribution. @var{p} can
## be a vector with the probabilities of the categories or a matrix with each
## row containing the probabilities of a multinomial sample. If @var{p} has
## more than one row and @var{n} is non-scalar, then the number of rows of
## @var{p} must match the number of elements of @var{n}.
##
## @item
## @var{s} is the number of multinomial samples to be generated. @var{s} must
## be a non-negative integer. If @var{s} is specified, then @var{n} must be
## scalar and @var{p} must be a vector.
## @end itemize
##
## @subheading Return values
##
## @itemize @bullet
## @item
## @var{x} is a matrix of random samples from the multinomial distribution with
## corresponding parameters @var{n} and @var{p}. Each row corresponds to one
## multinomial sample. The number of columns, therefore, corresponds to the
## number of columns of @var{p}. If @var{s} is not specified, then the number
## of rows of @var{x} is the maximum of the number of elements of @var{n} and
## the number of rows of @var{p}. If a row of @var{p} does not sum to @code{1},
## then the corresponding row of @var{x} will contain only @code{NaN} values.
## @end itemize
##
## @subheading Examples
##
## @example
## @group
## n = 10;
## p = [0.2, 0.5, 0.3];
## x = mnrnd (n, p);
## @end group
##
## @group
## n = 10 * ones (3, 1);
## p = [0.2, 0.5, 0.3];
## x = mnrnd (n, p);
## @end group
##
## @group
## n = (1:2)';
## p = [0.2, 0.5, 0.3; 0.1, 0.1, 0.8];
## x = mnrnd (n, p);
## @end group
## @end example
##
## @subheading References
##
## @enumerate
## @item
## Wendy L. Martinez and Angel R. Martinez. @cite{Computational Statistics
## Handbook with MATLAB}. Appendix E, pages 547-557, Chapman & Hall/CRC, 2001.
##
## @item
## Merran Evans, Nicholas Hastings and Brian Peacock. @cite{Statistical
## Distributions}. pages 134-136, Wiley, New York, third edition, 2000.
## @end enumerate
## @end deftypefn
## Author: Arno Onken <asnelt@asnelt.org>
## Description: Random samples from the multinomial distribution
function x = mnrnd (n, p, s)
# Check arguments
if (nargin == 3)
if (! isscalar (n) || n < 0 || round (n) != n)
error ("mnrnd: n must be a non-negative integer");
endif
if (! isvector (p) || any (p < 0 | p > 1))
error ("mnrnd: p must be a vector of probabilities");
endif
if (! isscalar (s) || s < 0 || round (s) != s)
error ("mnrnd: s must be a non-negative integer");
endif
elseif (nargin == 2)
if (isvector (p) && size (p, 1) > 1)
p = p';
endif
if (! isvector (n) || any (n < 0 | round (n) != n) || size (n, 2) > 1)
error ("mnrnd: n must be a non-negative integer column vector");
endif
if (! ismatrix (p) || isempty (p) || any (p < 0 | p > 1))
error ("mnrnd: p must be a non-empty matrix with rows of probabilities");
endif
if (! isscalar (n) && size (p, 1) > 1 && length (n) != size (p, 1))
error ("mnrnd: the length of n must match the number of rows of p");
endif
else
print_usage ();
endif
# Adjust input sizes
if (nargin == 3)
n = n * ones (s, 1);
p = repmat (p(:)', s, 1);
elseif (nargin == 2)
if (isscalar (n) && size (p, 1) > 1)
n = n * ones (size (p, 1), 1);
elseif (size (p, 1) == 1)
p = repmat (p, length (n), 1);
endif
endif
sz = size (p);
# Upper bounds of categories
ub = cumsum (p, 2);
# Make sure that the greatest upper bound is 1
gub = ub(:, end);
ub(:, end) = 1;
# Lower bounds of categories
lb = [zeros(sz(1), 1) ub(:, 1:(end-1))];
# Draw multinomial samples
x = zeros (sz);
for i = 1:sz(1)
# Draw uniform random numbers
r = repmat (rand (n(i), 1), 1, sz(2));
# Compare the random numbers of r to the cumulated probabilities of p and
# count the number of samples for each category
x(i, :) = sum (r <= repmat (ub(i, :), n(i), 1) & r > repmat (lb(i, :), n(i), 1), 1);
endfor
# Set invalid rows to NaN
k = (abs (gub - 1) > 1e-6);
x(k, :) = NaN;
endfunction
%!test
%! n = 10;
%! p = [0.2, 0.5, 0.3];
%! x = mnrnd (n, p);
%! assert (size (x), size (p));
%! assert (all (x >= 0));
%! assert (all (round (x) == x));
%! assert (sum (x) == n);
%!test
%! n = 10 * ones (3, 1);
%! p = [0.2, 0.5, 0.3];
%! x = mnrnd (n, p);
%! assert (size (x), [length(n), length(p)]);
%! assert (all (x >= 0));
%! assert (all (round (x) == x));
%! assert (all (sum (x, 2) == n));
%!test
%! n = (1:2)';
%! p = [0.2, 0.5, 0.3; 0.1, 0.1, 0.8];
%! x = mnrnd (n, p);
%! assert (size (x), size (p));
%! assert (all (x >= 0));
%! assert (all (round (x) == x));
%! assert (all (sum (x, 2) == n));
|