This file is indexed.

/usr/share/octave/packages/statistics-1.2.3/mvnpdf.m is in octave-statistics 1.2.3-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
## Author: Paul Kienzle <pkienzle@users.sf.net>
## This program is granted to the public domain.

## -*- texinfo -*-
## @deftypefn {Function File} {@var{y} =} mvnpdf (@var{x})
## @deftypefnx{Function File} {@var{y} =} mvnpdf (@var{x}, @var{mu})
## @deftypefnx{Function File} {@var{y} =} mvnpdf (@var{x}, @var{mu}, @var{sigma})
## Compute multivariate normal pdf for @var{x} given mean @var{mu} and covariance matrix 
## @var{sigma}.  The dimension of @var{x} is @var{d} x @var{p}, @var{mu} is
## @var{1} x @var{p} and @var{sigma} is @var{p} x @var{p}. The normal pdf is
## defined as
##
## @example
## @iftex
## @tex
## $$ 1/y^2 = (2 pi)^p |\Sigma| \exp \{ (x-\mu)^T \Sigma^{-1} (x-\mu) \} $$
## @end tex
## @end iftex
## @ifnottex
## 1/@var{y}^2 = (2 pi)^@var{p} |@var{Sigma}| exp @{ (@var{x}-@var{mu})' inv(@var{Sigma})@
## (@var{x}-@var{mu}) @}
## @end ifnottex
## @end example
##
## @strong{References}
## 
## NIST Engineering Statistics Handbook 6.5.4.2
## http://www.itl.nist.gov/div898/handbook/pmc/section5/pmc542.htm
##
## @strong{Algorithm}
##
## Using Cholesky factorization on the positive definite covariance matrix:
##
## @example
## @var{r} = chol (@var{sigma});
## @end example
##
## where @var{r}'*@var{r} = @var{sigma}. Being upper triangular, the determinant
## of @var{r} is  trivially the product of the diagonal, and the determinant of
## @var{sigma} is the square of this:
##
## @example
## @var{det} = prod (diag (@var{r}))^2;
## @end example
##
## The formula asks for the square root of the determinant, so no need to 
## square it.
##
## The exponential argument @var{A} = @var{x}' * inv (@var{sigma}) * @var{x}
##
## @example
## @var{A} = @var{x}' * inv (@var{sigma}) * @var{x}
##   = @var{x}' * inv (@var{r}' * @var{r}) * @var{x}
##   = @var{x}' * inv (@var{r}) * inv(@var{r}') * @var{x}
## @end example
##
## Given that inv (@var{r}') == inv(@var{r})', at least in theory if not numerically,
##
## @example
## @var{A}  = (@var{x}' / @var{r}) * (@var{x}'/@var{r})' = sumsq (@var{x}'/@var{r})
## @end example
##
## The interface takes the parameters to the multivariate normal in columns rather than 
## rows, so we are actually dealing with the transpose:
##
## @example
## @var{A} = sumsq (@var{x}/r)
## @end example
##
## and the final result is:
##
## @example
## @var{r} = chol (@var{sigma})
## @var{y} = (2*pi)^(-@var{p}/2) * exp (-sumsq ((@var{x}-@var{mu})/@var{r}, 2)/2) / prod (diag (@var{r}))
## @end example
##
## @seealso{mvncdf, mvnrnd}
## @end deftypefn

function pdf = mvnpdf (x, mu = 0, sigma = 1)
  ## Check input
  if (!ismatrix (x))
    error ("mvnpdf: first input must be a matrix");
  endif
  
  if (!isvector (mu) && !isscalar (mu))
    error ("mvnpdf: second input must be a real scalar or vector");
  endif
  
  if (!ismatrix (sigma) || !issquare (sigma))
    error ("mvnpdf: third input must be a square matrix");
  endif
  
  [ps, ps] = size (sigma);
  [d, p] = size (x);
  if (p != ps)
    error ("mvnpdf: dimensions of data and covariance matrix does not match");
  endif
  
  if (numel (mu) != p && numel (mu) != 1)
    error ("mvnpdf: dimensions of data does not match dimensions of mean value");
  endif

  mu = mu (:).';
  if (all (size (mu) == [1, p]))
    mu = repmat (mu, [d, 1]);
  endif
  
  if (nargin < 3)
    pdf = (2*pi)^(-p/2) * exp (-sumsq (x-mu, 2)/2);
  else
    r = chol (sigma);
    pdf = (2*pi)^(-p/2) * exp (-sumsq ((x-mu)/r, 2)/2) / prod (diag (r));
  endif
endfunction

%!demo
%! mu = [0, 0];
%! sigma = [1, 0.1; 0.1, 0.5];
%! [X, Y] = meshgrid (linspace (-3, 3, 25));
%! XY = [X(:), Y(:)];
%! Z = mvnpdf (XY, mu, sigma);
%! mesh (X, Y, reshape (Z, size (X)));
%! colormap jet

%!test
%! mu = [1,-1];
%! sigma = [.9 .4; .4 .3];
%! x = [ 0.5 -1.2; -0.5 -1.4; 0 -1.5];
%! p = [   0.41680003660313; 0.10278162359708; 0.27187267524566 ];
%! q = mvnpdf (x, mu, sigma);
%! assert (p, q, 10*eps);