This file is indexed.

/usr/share/octave/packages/statistics-1.2.3/mvtrnd.m is in octave-statistics 1.2.3-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
## Copyright (C) 2012  Arno Onken <asnelt@asnelt.org>, IƱigo Urteaga
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} {@var{x} =} mvtrnd (@var{sigma}, @var{nu})
## @deftypefnx {Function File} {@var{x} =} mvtrnd (@var{sigma}, @var{nu}, @var{n})
## Generate random samples from the multivariate t-distribution.
##
## @subheading Arguments
##
## @itemize @bullet
## @item
## @var{sigma} is the matrix of correlation coefficients. If there are any
## non-unit diagonal elements then @var{sigma} will be normalized, so that the
## resulting covariance of the obtained samples @var{x} follows:
## @code{cov (x) = nu/(nu-2) * sigma ./ (sqrt (diag (sigma) * diag (sigma)))}.
## In order to obtain samples distributed according to a standard multivariate
## t-distribution, @var{sigma} must be equal to the identity matrix. To generate
## multivariate t-distribution samples @var{x} with arbitrary covariance matrix
## @var{sigma}, the following scaling might be used:
## @code{x = mvtrnd (sigma, nu, n) * diag (sqrt (diag (sigma)))}.
##
## @item
## @var{nu} is the degrees of freedom for the multivariate t-distribution.
## @var{nu} must be a vector with the same number of elements as samples to be
## generated or be scalar.
##
## @item
## @var{n} is the number of rows of the matrix to be generated. @var{n} must be
## a non-negative integer and corresponds to the number of samples to be
## generated.
## @end itemize
##
## @subheading Return values
##
## @itemize @bullet
## @item
## @var{x} is a matrix of random samples from the multivariate t-distribution
## with @var{n} row samples.
## @end itemize
##
## @subheading Examples
##
## @example
## @group
## sigma = [1, 0.5; 0.5, 1];
## nu = 3;
## n = 10;
## x = mvtrnd (sigma, nu, n);
## @end group
##
## @group
## sigma = [1, 0.5; 0.5, 1];
## nu = [2; 3];
## n = 2;
## x = mvtrnd (sigma, nu, 2);
## @end group
## @end example
##
## @subheading References
##
## @enumerate
## @item
## Wendy L. Martinez and Angel R. Martinez. @cite{Computational Statistics
## Handbook with MATLAB}. Appendix E, pages 547-557, Chapman & Hall/CRC, 2001.
##
## @item
## Samuel Kotz and Saralees Nadarajah. @cite{Multivariate t Distributions and
## Their Applications}. Cambridge University Press, Cambridge, 2004.
## @end enumerate
## @end deftypefn

## Author: Arno Onken <asnelt@asnelt.org>
## Description: Random samples from the multivariate t-distribution

function x = mvtrnd (sigma, nu, n)

  # Check arguments
  if (nargin < 2)
    print_usage ();
  endif

  if (! ismatrix (sigma) || any (any (sigma != sigma')) || min (eig (sigma)) <= 0)
    error ("mvtrnd: sigma must be a positive definite matrix");
  endif

  if (!isvector (nu) || any (nu <= 0))
    error ("mvtrnd: nu must be a positive scalar or vector");
  endif
  nu = nu(:);

  if (nargin > 2)
    if (! isscalar (n) || n < 0 | round (n) != n)
      error ("mvtrnd: n must be a non-negative integer")
    endif
    if (isscalar (nu))
      nu = nu * ones (n, 1);
    else
      if (length (nu) != n)
        error ("mvtrnd: n must match the length of nu")
      endif
    endif
  else
    n = length (nu);
  endif

  # Normalize sigma
  if (any (diag (sigma) != 1))
    sigma = sigma ./ sqrt (diag (sigma) * diag (sigma)');
  endif

  # Dimension
  d = size (sigma, 1);
  # Draw samples
  y = mvnrnd (zeros (1, d), sigma, n);
  u = repmat (chi2rnd (nu), 1, d);
  x = y .* sqrt (repmat (nu, 1, d) ./ u);
endfunction

%!test
%! sigma = [1, 0.5; 0.5, 1];
%! nu = 3;
%! n = 10;
%! x = mvtrnd (sigma, nu, n);
%! assert (size (x), [10, 2]);

%!test
%! sigma = [1, 0.5; 0.5, 1];
%! nu = [2; 3];
%! n = 2;
%! x = mvtrnd (sigma, nu, 2);
%! assert (size (x), [2, 2]);