/usr/share/octave/packages/statistics-1.2.3/pdist.m is in octave-statistics 1.2.3-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 | ## Copyright (C) 2008 Francesco Potortì <pot@gnu.org>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {@var{y} =} pdist (@var{x})
## @deftypefnx {Function File} {@var{y} =} pdist (@var{x}, @var{metric})
## @deftypefnx {Function File} {@var{y} =} pdist (@var{x}, @var{metric}, @var{metricarg}, @dots{})
##
## Return the distance between any two rows in @var{x}.
##
## @var{x} is the @var{n}x@var{d} matrix representing @var{q} row
## vectors of size @var{d}.
##
## The output is a dissimilarity matrix formatted as a row vector
## @var{y}, @math{(n-1)*n/2} long, where the distances are in
## the order [(1, 2) (1, 3) @dots{} (2, 3) @dots{} (n-1, n)]. You can
## use the @code{squareform} function to display the distances between
## the vectors arranged into an @var{n}x@var{n} matrix.
##
## @code{metric} is an optional argument specifying how the distance is
## computed. It can be any of the following ones, defaulting to
## "euclidean", or a user defined function that takes two arguments
## @var{x} and @var{y} plus any number of optional arguments,
## where @var{x} is a row vector and and @var{y} is a matrix having the
## same number of columns as @var{x}. @code{metric} returns a column
## vector where row @var{i} is the distance between @var{x} and row
## @var{i} of @var{y}. Any additional arguments after the @code{metric}
## are passed as metric (@var{x}, @var{y}, @var{metricarg1},
## @var{metricarg2} @dots{}).
##
## Predefined distance functions are:
##
## @table @samp
## @item "euclidean"
## Euclidean distance (default).
##
## @item "seuclidean"
## Standardized Euclidean distance. Each coordinate in the sum of
## squares is inverse weighted by the sample variance of that
## coordinate.
##
## @item "mahalanobis"
## Mahalanobis distance: see the function mahalanobis.
##
## @item "cityblock"
## City Block metric, aka Manhattan distance.
##
## @item "minkowski"
## Minkowski metric. Accepts a numeric parameter @var{p}: for @var{p}=1
## this is the same as the cityblock metric, with @var{p}=2 (default) it
## is equal to the euclidean metric.
##
## @item "cosine"
## One minus the cosine of the included angle between rows, seen as
## vectors.
##
## @item "correlation"
## One minus the sample correlation between points (treated as
## sequences of values).
##
## @item "spearman"
## One minus the sample Spearman's rank correlation between
## observations, treated as sequences of values.
##
## @item "hamming"
## Hamming distance: the quote of the number of coordinates that differ.
##
## @item "jaccard"
## One minus the Jaccard coefficient, the quote of nonzero
## coordinates that differ.
##
## @item "chebychev"
## Chebychev distance: the maximum coordinate difference.
## @end table
## @seealso{linkage, mahalanobis, squareform}
## @end deftypefn
## Author: Francesco Potortì <pot@gnu.org>
function y = pdist (x, metric, varargin)
if (nargin < 1)
print_usage ();
elseif ((nargin > 1)
&& ! ischar (metric)
&& ! isa (metric, "function_handle"))
error (["pdist: the distance function must be either a string or a "
"function handle."]);
endif
if (nargin < 2)
metric = "euclidean";
endif
if (! ismatrix (x) || isempty (x))
error ("pdist: x must be a nonempty matrix");
elseif (length (size (x)) > 2)
error ("pdist: x must be 1 or 2 dimensional");
endif
y = [];
if (rows(x) == 1)
return;
endif
if (ischar (metric))
order = nchoosek(1:rows(x),2);
Xi = order(:,1);
Yi = order(:,2);
X = x';
metric = lower (metric);
switch (metric)
case "euclidean"
d = X(:,Xi) - X(:,Yi);
if (str2num(version()(1:3)) > 3.1)
y = norm (d, "cols");
else
y = sqrt (sumsq (d, 1));
endif
case "seuclidean"
d = X(:,Xi) - X(:,Yi);
weights = inv (diag (var (x, 0, 1)));
y = sqrt (sum ((weights * d) .* d, 1));
case "mahalanobis"
d = X(:,Xi) - X(:,Yi);
weights = inv (cov (x));
y = sqrt (sum ((weights * d) .* d, 1));
case "cityblock"
d = X(:,Xi) - X(:,Yi);
if (str2num(version()(1:3)) > 3.1)
y = norm (d, 1, "cols");
else
y = sum (abs (d), 1);
endif
case "minkowski"
d = X(:,Xi) - X(:,Yi);
p = 2; # default
if (nargin > 2)
p = varargin{1}; # explicitly assigned
endif;
if (str2num(version()(1:3)) > 3.1)
y = norm (d, p, "cols");
else
y = (sum ((abs (d)).^p, 1)).^(1/p);
endif
case "cosine"
prod = X(:,Xi) .* X(:,Yi);
weights = sumsq (X(:,Xi), 1) .* sumsq (X(:,Yi), 1);
y = 1 - sum (prod, 1) ./ sqrt (weights);
case "correlation"
if (rows(X) == 1)
error ("pdist: correlation distance between scalars not defined")
endif
corr = cor (X);
y = 1 - corr (sub2ind (size (corr), Xi, Yi))';
case "spearman"
if (rows(X) == 1)
error ("pdist: spearman distance between scalars not defined")
endif
corr = spearman (X);
y = 1 - corr (sub2ind (size (corr), Xi, Yi))';
case "hamming"
d = logical (X(:,Xi) - X(:,Yi));
y = sum (d, 1) / rows (X);
case "jaccard"
d = logical (X(:,Xi) - X(:,Yi));
weights = X(:,Xi) | X(:,Yi);
y = sum (d & weights, 1) ./ sum (weights, 1);
case "chebychev"
d = X(:,Xi) - X(:,Yi);
if (str2num(version()(1:3)) > 3.1)
y = norm (d, Inf, "cols");
else
y = max (abs (d), [], 1);
endif
endswitch
endif
if (isempty (y))
## Metric is a function handle or the name of an external function
l = rows (x);
y = zeros (1, nchoosek (l, 2));
idx = 1;
for ii = 1:l-1
for jj = ii+1:l
y(idx++) = feval (metric, x(ii,:), x, varargin{:})(jj);
endfor
endfor
endif
endfunction
%!shared xy, t, eucl
%! xy = [0 1; 0 2; 7 6; 5 6];
%! t = 1e-3;
%! eucl = @(v,m) sqrt(sumsq(repmat(v,rows(m),1)-m,2));
%!assert(pdist(xy), [1.000 8.602 7.071 8.062 6.403 2.000],t);
%!assert(pdist(xy,eucl), [1.000 8.602 7.071 8.062 6.403 2.000],t);
%!assert(pdist(xy,"euclidean"), [1.000 8.602 7.071 8.062 6.403 2.000],t);
%!assert(pdist(xy,"seuclidean"), [0.380 2.735 2.363 2.486 2.070 0.561],t);
%!assert(pdist(xy,"mahalanobis"),[1.384 1.967 2.446 2.384 1.535 2.045],t);
%!assert(pdist(xy,"cityblock"), [1.000 12.00 10.00 11.00 9.000 2.000],t);
%!assert(pdist(xy,"minkowski"), [1.000 8.602 7.071 8.062 6.403 2.000],t);
%!assert(pdist(xy,"minkowski",3),[1.000 7.763 6.299 7.410 5.738 2.000],t);
%!assert(pdist(xy,"cosine"), [0.000 0.349 0.231 0.349 0.231 0.013],t);
%!assert(pdist(xy,"correlation"),[0.000 2.000 0.000 2.000 0.000 2.000],t);
%!assert(pdist(xy,"spearman"), [0.000 2.000 0.000 2.000 0.000 2.000],t);
%!assert(pdist(xy,"hamming"), [0.500 1.000 1.000 1.000 1.000 0.500],t);
%!assert(pdist(xy,"jaccard"), [1.000 1.000 1.000 1.000 1.000 0.500],t);
%!assert(pdist(xy,"chebychev"), [1.000 7.000 5.000 7.000 5.000 2.000],t);
|