/usr/share/octave/packages/statistics-1.2.3/wishrnd.m is in octave-statistics 1.2.3-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 | ## Copyright (C) 2013 Nir Krakauer <nkrakauer@ccny.cuny.edu>
##
## This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {} [@var{W}[, @var{D}]] = wishrnd (@var{Sigma}, @var{df}[, @var{D}][, @var{n}=1])
## Return a random matrix sampled from the Wishart distribution with given parameters
##
## Inputs: the @var{p} x @var{p} positive definite matrix @var{Sigma} and scalar degrees of freedom parameter @var{df} (and optionally the Cholesky factor @var{D} of @var{Sigma}).
## @var{df} can be non-integer as long as @var{df} > @var{p}
##
## Output: a random @var{p} x @var{p} matrix @var{W} from the Wishart(@var{Sigma}, @var{df}) distribution. If @var{n} > 1, then @var{W} is @var{p} x @var{p} x @var{n} and holds @var{n} such random matrices. (Optionally, the Cholesky factor @var{D} of @var{Sigma} is also returned.)
##
## Averaged across many samples, the mean of @var{W} should approach @var{df}*@var{Sigma}, and the variance of each element @var{W}_ij should approach @var{df}*(@var{Sigma}_ij^2 + @var{Sigma}_ii*@var{Sigma}_jj)
##
## Reference: Yu-Cheng Ku and Peter Bloomfield (2010), Generating Random Wishart Matrices with Fractional Degrees of Freedom in OX, http://www.gwu.edu/~forcpgm/YuChengKu-030510final-WishartYu-ChengKu.pdf
##
## @seealso{iwishrnd, wishpdf}
## @end deftypefn
## Author: Nir Krakauer <nkrakauer@ccny.cuny.edu>
## Description: Compute the probability density function of the Wishart distribution
function [W, D] = wishrnd(Sigma, df, D, n=1)
if (nargin < 3)
print_usage ();
endif
if nargin < 3 || isempty(D)
try
D = chol(Sigma);
catch
error('Cholesky decomposition failed; Sigma probably not positive definite')
end_try_catch
endif
p = size(D, 1);
if df < p
df = floor(df); #distribution not defined for small noninteger df
df_isint = 1;
else
#check for integer degrees of freedom
df_isint = (df == floor(df));
endif
if ~df_isint
[ii, jj] = ind2sub([p, p], 1:(p*p));
endif
if n > 1
W = nan(p, p, n);
endif
for i = 1:n
if df_isint
Z = randn(df, p) * D;
W(:, :, i) = Z'*Z;
else
Z = diag(sqrt(chi2rnd(df - (0:(p-1))))); #fill diagonal
#note: chi2rnd(x) is equivalent to 2*randg(x/2), but the latter seems to offer no performance advantage
Z(ii > jj) = randn(p*(p-1)/2, 1); #fill lower triangle with normally distributed variates
Z = D * Z;
W(:, :, i) = Z*Z';
endif
endfor
endfunction
%!assert(size (wishrnd (1,2,1)), [1, 1]);
%!assert(size (wishrnd ([],2,1)), [1, 1]);
%!assert(size (wishrnd ([3 1; 1 3], 2.00001, [], 1)), [2, 2]);
%!assert(size (wishrnd (eye(2), 2, [], 3)), [2, 2, 3]);
%% Test input validation
%!error wishrnd ()
%!error wishrnd (1)
%!error wishrnd ([-3 1; 1 3],1)
%!error wishrnd ([1; 1],1)
|