/usr/share/psychtoolbox-3/PsychDemos/RenderDemo.m is in psychtoolbox-3-common 3.0.11.20140816.dfsg1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 | % RenderDemo
%
% Illustrates calibration interface for simple task of producing a uniform
% color patch of desired CIE xyY coordinates.
%
% The calculation is done with respect to the current PTB demonstration
% calibration file.
%
% The demo shows multiple different ways to implement this, starting with a
% purely Matlab based method, progressing to more advanced methods. The
% final demonstration shows how to do it automatically and graphics
% hardware accelerated.
%
% Demo 1:
%
% The RGB values are gamma corrected and live in the range [0,1]. If they
% contain 0 or 1, the xyY coordinates requested may have been out of gamut.
%
% A uniform color patch is displayed in the MATLAB figure window. This is
% not a well-controlled display method, but does give a sense of the patch
% color if the calibration file is a reasonable description of the display.
%
% Immediately afterwards, the same color patch is shown in a PTB onscreen
% window, with the same gamma table loaded which was used during
% calibration measurements. This should render an accurate stimulus.
%
% Demo 2: As demo 1, but displaying in a onscreen window and performing the
% gamma correction via proper inverse gamma lookup tables loaded into the
% graphics card, thereby presenting on a linearized display, instead of
% using the SensorToSettings() routine to adapt the stimulus to a
% non-linearized display.
%
% The last two demos Demo 3 and Demo 4 require a recent graphics card and
% perform all color space conversions and calibrated display automatically
% and hardware accelerated on the graphics card. Any NVidia GeForce-8000 or
% later, AMD Radeon X-1000 or later, or Intel HD graphics card should be
% able to support these demos.
%
% Demo 3: The stimulus is defined in XYZ tristimulus color space and
% converted automatically by Screen() into RGB output format, taking the
% calibration data in 'cal' into account.
%
% Demo 4: The stimulus is directly defined in xyY chromacity + luminance
% format and all conversions and calibrations are done automatically by
% Screen().
%
% 4/26/97 dhb Wrote it.
% 7/25/97 dhb Better initialization.
% 3/12/98 dgp Use Ask.
% 3/14/02 dhb Update for OpenWindow.
% 4/03/02 awi Merged in Windows changes. On Windows we do not copy the result to the clipboard.
% 4/13/02 awi Changed "SetColorSpace" to new name "SetSensorColorSpace".
% Changed "LinearToSettings" to new name "SensorToSettings".
% 12/21/02 dhb Remove reliance on now obsolete OpenWindow/CloseWindow.
% 11/16/06 dhb Start getting this to work with PTB-3.
% 11/22/06 dhb Fixed except that Ask() needs to be fixed.
% 6/16/11 dhb The PTB display section was out of date and didn't work. I removed it.
% 1/26/13 mk Add standard PTB display, but also imaging pipeline based methods.
% Clear out workspace
clear
% Load default calibration file:
cal = LoadCalFile('PTB3TestCal');
load T_xyz1931
T_xyz1931 = 683*T_xyz1931;
cal = SetSensorColorSpace(cal,T_xyz1931,S_xyz1931);
cal = SetGammaMethod(cal,0);
% Get xyY, render, and report.
xyY = input('Enter xyY (as a row vector) default [.3 .3 50]: ')';
if isempty(xyY)
xyY = [.3 .3 50]';
end
% Pure software conversion:
XYZ = xyYToXYZ(xyY);
[RGB, outOfRangePixels] = SensorToSettings(cal, XYZ);
fprintf('Computed RGB: [%g %g %g]\n', RGB(1), RGB(2), RGB(3));
% Check for out-of-range non-displayable color values:
if any(outOfRangePixels)
fprintf('WARNING: Out of range RGB values -- not displayable!\n');
end
% Make it an image
nX = 256; nY = 128;
theRGBCalFormat = RGB*ones(1,nX*nY);
theRGBImage = CalFormatToImage(theRGBCalFormat,nX,nY);
% Show in a Matlab figure window. This will not be calibrated,
% but gives the general sense. Use PTB display routines for
% more precise display.
figure; clf;
h = image(theRGBImage);
title('Here is the color');
set(gca,'XTickLabel','')
set(gca,'YTickLabel','')
set(gca,'XTick',[]);
set(gca,'YTick',[])
drawnow;
fprintf('\n\nPress any key to continue. This will do the same thing in a set of Psychtoolbox onscreen windows.\n');
KbStrokeWait(-1);
close all;
drawnow;
try
% Open window in GUI mode, top-left, 300 x 300 pixels:
AssertOpenGL;
% Define our desired background color in RGB primary space:
% RGB = [0.01, 0.01, 0.01] for almost black.
bgcolor = [0.01; 0.01; 0.01];
% Declutter our output for this demo:
Screen('Preference', 'SuppressAllWarnings', 1);
% Skip display sync tests:
oldsync = Screen('Preference', 'SkipSyncTests', 2);
% Select display screen to show windows:
screenId = max(Screen('Screens'));
[win0, winRect0] = Screen('OpenWindow', screenId, bgcolor * 255, [0 0 300 300], [], [], [], [], [], kPsychGUIWindow);
% Load the gamma table which was used during calibration measurements:
% If this is a 1024 slot table we downsample to 256 slots, so it works
% with MS-Windows, otherwise we hope it is a compatible table.
% We could do better here, but this is just a demo...
if length(cal.gammaInput) == 1024
gammaInput = cal.gammaInput(1:4:end);
else
gammaInput = cal.gammaInput;
end
% Replicate to 3 columns for the three primary colors:
gammaInput = repmat(gammaInput, 1, 3);
% Before table upload, we store a backup copy of the original table, so
% it can get restored at end of session:
BackupCluts(screenId);
Screen('LoadNormalizedGammaTable', screenId, gammaInput);
% Convert new theRGBImage to texture and draw it into win1:
tex = Screen('MakeTexture', win0, round(theRGBImage * 255));
Screen('DrawTexture', win0, tex);
Screen('Close', tex);
% Show it:
Screen('Flip', win0);
dstRect0 = CenterRect([0 0 nX nY], winRect0);
readBack0 = Screen('GetImage', win0, dstRect0);
fprintf('\n\nPress any key to continue. This will demonstrate another way, using SensorToPrimary() + \n');
fprintf('a proper inverse gamma table, to linearize your display, instead of SensorToSettings().\n\n');
KbStrokeWait(-1);
% Close old window, as its content is not compatible with the gamma
% table we're gonna set now:
Screen('CloseAll');
% Show same thing in a GUI window of 300 x 300 pixels.
fprintf('Now we do exactly the same thing, just displaying in a onscreen window.\n');
fprintf('However, we use gamma correction via the graphics hardware, so we have a linearized\n');
fprintf('display. This allows to use the simpler SensorToPrimary() instead of SensorToSettings().\n\n');
% Open a standard window:
[win1, winRect1] = Screen('OpenWindow', screenId, bgcolor * 255, [0 0 300 300], [], [], [], [], [], kPsychGUIWindow);
% Load a gamma correction table into the graphics card, as defined as
% the inverse gamma table for given measured display gamma table
% 'cal.gammaTable'. However, we sub-sample the table to 256 slots to
% make sure it works on MS-Windows, not only on OSX or Linux:
iGammaTable = InvertGammaTable(cal.gammaInput, cal.gammaTable, 256);
% Load inverse gamma table into GPU:
Screen('LoadNormalizedGammaTable', screenId, iGammaTable);
% Ok, now we have a linearized display due to gamma correction. This means
% we can define our stimulus in tristimulus XYZ space. This allows us to
% use the simpler SensorToPrimary() function instead of the more complex
% SensorToSettings() function:
XYZ = xyYToXYZ(xyY);
RGB = SensorToPrimary(cal, XYZ);
fprintf('Recomputed linear RGB: [%g %g %g]\n', RGB(1), RGB(2), RGB(3));
% Check for out-of-range non-displayable color values:
if any(RGB < 0 | RGB > 1)
fprintf('WARNING: Out of range RGB values -- not displayable!\n');
end
% Make it an image. Now need to scale by 255, as onscreen windows want
% color values in range 0 - 255 instead of 0 - 1 by default:
nX = 256; nY = 128;
theRGBCalFormat = RGB * 255 * ones(1,nX*nY);
theRGBImage = CalFormatToImage(theRGBCalFormat,nX,nY);
% Convert new theRGBImage to texture and draw it into win1:
tex = Screen('MakeTexture', win1, round(theRGBImage));
Screen('DrawTexture', win1, tex);
Screen('Close', tex);
% Show it:
Screen('Flip', win1);
dstRect1 = CenterRect([0 0 nX nY], winRect1);
readBack1 = Screen('GetImage', win1, dstRect1);
fprintf('\n\nPress any key to continue. This will demonstrate a simpler way to do it via the imaging pipeline.\n');
fprintf('Screen() will automatically convert XYZ tristimulus color values to calibrated RGB values before display.\n\n');
KbStrokeWait(-1);
% Make sure this will actually work:
AssertGLSL;
% Open a 2nd window, now using the imaging pipeline:
PsychImaging('PrepareConfiguration');
% Enable 32 bpc floating point framebuffer, so fractional color values
% can be represented accurately. We will store XYZ tristimulus color
% values in the frambuffer, not RGB values:
PsychImaging('AddTask', 'General', 'FloatingPoint32Bit');
% Also use unrestricted color range for writing arbitrary color values
% to the framebuffer:
PsychImaging('AddTask', 'General', 'NormalizedHighresColorRange');
% It shall use builtin fast SensorToPrimary() plugin:
PsychImaging('AddTask', 'AllViews', 'DisplayColorCorrection', 'SensorToPrimary');
% Check for valid (displayable) final color values in 0.0 - 1.0 range.
% Mark out-of-range pixels visually:
PsychImaging('AddTask', 'AllViews', 'DisplayColorCorrection', 'CheckOnly');
% Open it: Our window operates in XYZ color space, so we need to define
% a XYZ background input color that leads to our desired background
% color 'bgcolor':
background = PrimaryToSensor(cal, bgcolor);
[win2, winRect2] = PsychImaging('OpenWindow', screenId, background, [310 0 610 300], [], [], [], [], [], kPsychGUIWindow);
% Assign 'cal' struct for XYZ -> RGB conversion:
PsychColorCorrection('SetSensorToPrimary', win2, cal);
% Compared to above, we can skip the SensorToPrimary step:
XYZ = xyYToXYZ(xyY);
% Simply draw to the framebuffer, directly in XYZ format instead of RGB:
% We can use fillrect to draw the patch, without intermediate need for
% textures:
dstRect2 = CenterRect([0 0 nX nY], winRect2);
Screen('FillRect', win2, XYZ, dstRect2);
% Readback image in XYZ format from framebuffer:
readBack2In = Screen('GetImage', win2, [], 'drawBuffer', 1);
% Show it:
Screen('Flip', win2);
% Read back final image from framebuffer, for correctness check:
readBack2 = Screen('GetImage', win2, dstRect2);
% Plot manual and automatic result for comparison:
close all;
imshow(readBack1);
figure;
imshow(readBack2);
fprintf('\n\nPress any key to continue. This will demonstrate the most simple way to do it via the imaging pipeline.\n');
fprintf('This method allows to draw and define your stimulus completely in the xyY chromacity+luminance color space.\n');
fprintf('Screen() will automatically convert your xyY color values to proper RGB framebuffer values before display.\n\n');
KbStrokeWait(-1);
% Now the same thing, but we draw colors directly in (x,y) chromacity and Y
% luminance format [x,y,Y] into the framebuffer. The imaging pipeline
% will do the complete conversion from xyY space to XYZ space and then
% XYZ space to RGB space, followed by gamma correction by the graphics
% card for display linearization:
% Open a 2nd window, now using the imaging pipeline:
PsychImaging('PrepareConfiguration');
% Enable 32 bpc floating point framebuffer, so fractional color values
% can be represented accurately. We will store xyY chromacity +
% luminance color values in the frambuffer, not RGB values:
PsychImaging('AddTask', 'General', 'FloatingPoint32Bit');
% Also use unrestricted color range for writing arbitrary color values
% to the framebuffer:
PsychImaging('AddTask', 'General', 'NormalizedHighresColorRange');
% It shall use builtin fast xyYToXYZ() plugin for xyY -> XYZ conversion:
PsychImaging('AddTask', 'AllViews', 'DisplayColorCorrection', 'xyYToXYZ');
% It shall use builtin fast SensorToPrimary() plugin:
PsychImaging('AddTask', 'AllViews', 'DisplayColorCorrection', 'SensorToPrimary');
% Check for valid (displayable) final color values in 0.0 - 1.0 range.
% Mark out-of-range pixels visually:
PsychImaging('AddTask', 'AllViews', 'DisplayColorCorrection', 'CheckOnly');
% Open it: Our window operates in xyY color space, so we need to define
% a xyY background input color that leads to our desired background
% color 'bgcolor':
background = XYZToxyY(PrimaryToSensor(cal, bgcolor));
[win3, winRect3] = PsychImaging('OpenWindow', screenId, background, [0 330 300 630], [], [], [], [], [], kPsychGUIWindow);
% Assign 'cal' struct for XYZ -> RGB conversion:
PsychColorCorrection('SetSensorToPrimary', win3, cal);
% Simply draw to the framebuffer, directly in xyY format:
dstRect3 = CenterRect([0 0 nX nY], winRect3);
Screen('FillRect', win3, xyY, dstRect3);
% Readback image in xyY format from framebuffer:
readBack3In = Screen('GetImage', win3, dstRect3, 'drawBuffer', 1);
% Show it:
Screen('Flip', win3);
% Read back final image from framebuffer, for correctness check:
readBack3 = Screen('GetImage', win3, dstRect3);
% Plot manual and automatic result for comparison:
close all;
imshow(readBack1);
figure;
imshow(readBack3);
fprintf('Press any key to end the demo.\n');
KbStrokeWait(-1);
% sca closes all onscreen windows and restores the original gamma tables:
sca;
Screen('Preference', 'SuppressAllWarnings', 0);
Screen('Preference', 'SkipSyncTests', oldsync);
catch %#ok<CTCH>
sca;
Screen('Preference', 'SuppressAllWarnings', 0);
Screen('Preference', 'SkipSyncTests', oldsync);
psychrethrow(psychlasterror);
end
|