/usr/share/psychtoolbox-3/PsychOpenGL/AddNormalsToOBJ.m is in psychtoolbox-3-common 3.0.11.20140816.dfsg1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 | function obj = AddNormalsToOBJ(obj, flipDir)
% obj = AddNormalsToOBJ(obj [, flipDir=0]);
% Adds surface normal vectors to the vertices of the given input 'obj' 3D
% object representation, returns the new 'obj' with added vertex normal
% vectors. If the input 'obj' already has normal vectors assigned, these
% are overwritten!
%
% The optional parameter 'flipDir' defines if the direction of the computed
% normal vectors should be flipped by 180 degrees. Effectively, it selects
% which side of the triangle is considered to be the "outside" - the direction
% into which the normal vector should point.
%
% The employed algorithm only works on triangles, not on quads. It computes
% a per-triangle normal vector via normalized cross-product computation among
% the edges of the triangle. Then it distributes those normals to the 3
% vertices that define the triangle, accumulating contributions of all
% triangles that share a vertex. At the end, the accumulated normals are
% normalized and assigned as per-vertex normals.
% Child protection:
if nargin < 1
obj = [];
end
if isempty(obj)
error('Empty or missing "obj" object argument! You must provide this.');
end
% Assign default CW winding direction, if omitted:
if nargin < 2
flipDir = [];
end
if isempty(flipDir)
flipDir = 0;
end
% Map flipDir to a multiplier:
if flipDir > 0
flipDir = -1;
else
flipDir = +1;
end
% For each OBJ in the 'obj' struct, perform op:
for i=1:length(obj)
% Assign current to tmpobj:
tmpobj = obj{i};
% Really consists of triangles? We can't handle quads yet:
if size(tmpobj.faces, 1)~=3
fprintf('AddNormalsToOBJ: Warning: OBJ subobject %i does not contain triangle faces, but something else, e.g., quads! Cannot handle that. Skipped.\n', i);
continue;
end
nrfaces = size(tmpobj.faces, 2);
if nrfaces < 1
fprintf('AddNormalsToOBJ: Warning: OBJ subobject %i does not contain any faces! Skipped.\n', i);
continue;
end
% (Re-)create per-vertex normals array, initialize it to zero:
nrvertices = size(tmpobj.vertices, 2);
tmpobj.normals = zeros(3, nrvertices);
% Create temporary per-normal counter:
% ccount = zeros(1, size(tmpobj.vertices, 2));
% Iterate over all faces and compute each faces normal:
for j=1:nrfaces
% Fetch vertex indices for this triangle. Indices are zero-based,
% so we need to remap to Matlab/Octave 1-based indexing:
vidx = tmpobj.faces(:, j) + 1;
% Transfer the three vertices 3D position vectors to vpos:
vpos = tmpobj.vertices(:, vidx);
% Compute edges in-place, overwriting vpos 2 and 3:
vpos(:,2) = vpos(:,2) - vpos(:,1);
vpos(:,3) = vpos(:,3) - vpos(:,1);
% Compute normalized crossproduct: This is the triangle surface normal.
n = cross(vpos(:,2) , vpos(:,3));
n = n / norm(n);
% Add it to all contributing vertices for this triangle:
tmpobj.normals(:, vidx) = tmpobj.normals(:, vidx) + repmat(n, 1, 3);
% ccount(vidx) = ccount(vidx) + 1;
end
% All triangles processed: Compute final average normals and flip
% direction of vector if mandated by flipDir:
for j=1:nrvertices
tmpobj.normals(:, j) = tmpobj.normals(:, j) / (norm(tmpobj.normals(:, j)) * flipDir);
end
% Reassign tmpobj:
obj{i} = tmpobj;
end
|