/usr/share/psychtoolbox-3/PsychTests/PosterBatchAnalyzeTimestamps.m is in psychtoolbox-3-common 3.0.11.20140816.dfsg1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 | function PosterBatchAnalyzeTimestamps
% PosterBatchAnalyzeTimestamps
%
% Iterate over all timingtest result files ('Res_flipconfig_xxxx') which
% contain valid high precision flip timestamps, either based on
% 'p'hotodiode measurements or 'd'atapixx measurements.
%
% measMethod must be 'p' or 'd' for photo-diode measurement via RTBox, or
% Datapixx measurement.
%
% The recursive search for matching result files starts at /includes the
% current working directory.
%
% The script iterates over each matching file and adds all collected raw
% and high precision timestamps to a large array of timestamps. At the end
% of iteration, the pooled dataset is analyzed for mean, max and min
% deviation between Flip onset timestamps and measured timestamps. The
% total range of deviation and the standard deviation from the mean (==
% timestamp variability) is computed as well. This is done on the raw
% timestamps and high precision timestamps. End results are printed and
% scatterplots of all individual samples are shown.
%
% This script was used to compute the values of the "Stimulus timestamp
% precision" result table of Mario Kleiner's ECVP-2010 poster "Visual
% stimulus timing precision in Psychtoolbox-3: Tests, pitfalls &
% solutions". The same data is used in the corresponding table of his PhD
% Dissertation.
%
clear all;
global res;
global gRawDeltas;
global gPrecDeltas;
includer = [];
keyboard;
measMethod = input('Measurement method p or d for photodiode or datapixx?', 's');
if isempty(measMethod) || ~ismember(measMethod, ['p', 'd'])
error('Invalid measurement method provided!');
end
sdir = pwd;
% Recursively get filenames of all result files in 'sdir' directory tree:
[fdir, fnames] = subdir(sdir);
[gnrTotal, gnrSkipped, gnrCorrupt, gnrDisagree, gnrDelayed, meanDiff, stdDiff, rawmeanDiff, rawstdDiff, rawrangeDiff] = deal(0);
sc = 0;
count = 0;
rangeDiff = zeros(3,0);
rawrangeDiff = zeros(3,0);
% Check each for valid and matching datafile:
for fi = 1:length(fnames)
fname = char(fnames{fi});
% Only interested in Priority 1 runs with sync-flip and medium load:
if ~isempty(strfind(fname, 'Res_flipconfig_'))
%if ~isempty(strfind(fname, 'Res_flipconfig_prio1_syncflip')) && ~isempty(strfind(fname,'_medium_')) %&& ~isempty(strfind(fname,'noload'))
% Load result file: Will create struct 'res' with data:
load(fname);
if (res.measurementType == measMethod) && ismember(res.VBLTimestampingMode, [1,4]) && isfield(res, 'onsetFlipTime') && res.onsetFlipTime(end) > 0
count = count + 1
if isempty(includer) || ismember(count, includer)
sc = sc + 1;
fprintf('%s\n', fname);
[nrTotal, nrSkipped, nrCorrupt, nrDisagree, nrDelayed, meanDiff(sc), stdDiff(sc), rangeDiff(:, sc), rawmeanDiff(sc), rawstdDiff(sc), rawrangeDiff(:, sc)] = AnalyzeThis;
gnrTotal = gnrTotal + nrTotal;
gnrSkipped = gnrSkipped + nrSkipped;
gnrCorrupt = gnrCorrupt + nrCorrupt;
gnrDisagree = gnrDisagree + nrDisagree;
gnrDelayed = gnrDelayed + nrDelayed;
end
end
end
end
fprintf('\n\n\n');
fprintf('Total frames: %i\n', gnrTotal);
fprintf('Skipped frames: %i\n', gnrSkipped);
fprintf('Corrupted frames: %i\n', gnrCorrupt);
fprintf('Disagreed frames: %i\n', gnrDisagree);
fprintf('Delayed frames: %i\n', gnrDelayed);
if ~isempty(gPrecDeltas)
meanDiff = mean(gPrecDeltas);
stdDiff = std(gPrecDeltas);
rangeDiff(1) = range(gPrecDeltas);
rangeDiff(2) = min(gPrecDeltas);
rangeDiff(3) = max(gPrecDeltas);
rawmeanDiff = mean(gRawDeltas);
rawstdDiff = std(gRawDeltas);
rawrangeDiff(1) = range(gRawDeltas);
rawrangeDiff(2) = min(gRawDeltas);
rawrangeDiff(3) = max(gRawDeltas);
fprintf('Precision timestamps:\n');
fprintf('Mean error: %f\n', meanDiff);
fprintf('Stddev. : %f\n', stdDiff);
fprintf('Range : %f\n', rangeDiff(1));
fprintf('Min Error : %f\n', rangeDiff(2));
fprintf('Max Error : %f\n', rangeDiff(3));
fprintf('\n\n');
fprintf('Raw timestamps:\n');
fprintf('Mean error: %f\n', rawmeanDiff);
fprintf('Stddev. : %f\n', rawstdDiff);
fprintf('Range : %f\n', rawrangeDiff(1));
fprintf('Min Error : %f\n', rawrangeDiff(2));
fprintf('Max Error : %f\n', rawrangeDiff(3));
close all;
hold on;
scatter(0,0,'g');
scatter(ones(1,length(gPrecDeltas)), gPrecDeltas, 'b');
scatter(2*ones(1,length(gRawDeltas)), gRawDeltas, 'r');
hold off;
drawnow;
else
fprintf('No measurement data available for analysis!\n');
end
return;
end
function [nrTotal, nrSkipped, nrCorrupt, nrDisagree, nrDelayed, meanDiff, stdDiff, rangeDiff, rawmeanDiff, rawstdDiff, rawrangeDiff] = AnalyzeThis
global valids;
global res;
global deltas;
global vdeltas;
global vrawdeltas;
global skippedones;
global gRawDeltas;
global gPrecDeltas;
agrthresh = 0.0016;
% Discard 1st frame by marking it as invalid:
res.failFlag(1) = -1;
valids = find(res.failFlag == 0);
skippedones = find(abs(res.measuredTime - res.predictedOnset) > 0.75 * res.ifi);
skippedones = intersect(skippedones, valids);
nrSkipped = length(skippedones);
nrCorrupt = length(find(res.failFlag > 0));
deltas = res.measuredTime - res.onsetFlipTime;
nrDisagree = length(find(abs(deltas(valids)) > agrthresh));
nrDelayed = length(find(deltas(valids) < -0.66 * res.ifi));
% Compute final indices of valid samples in this set:
agreevalids = intersect(valids, find(abs(deltas) <= agrthresh));
% Only take deltas of valid frames into account:
vdeltas = 1000 * deltas(agreevalids); %#ok<FNDSB>
meanDiff = mean(vdeltas);
stdDiff = std(vdeltas);
rangeDiff(1) = range(vdeltas);
rangeDiff(2) = min(vdeltas);
rangeDiff(3) = max(vdeltas);
% Only take rawdeltas of valid frames into account:
rawdeltas = res.measuredTime - res.rawFlipTime;
vrawdeltas = 1000 * rawdeltas(agreevalids);
% Only add to global sample pools if no corrupt measurements:
if nrCorrupt == 0
% Add to global pool of precsion deltas:
gPrecDeltas = [gPrecDeltas , vdeltas];
% Add to global pool of raw deltas:
gRawDeltas = [gRawDeltas , vrawdeltas];
end
rawmeanDiff = mean(vrawdeltas);
rawstdDiff = std(vrawdeltas);
rawrangeDiff(1) = range(vrawdeltas);
rawrangeDiff(2) = min(vrawdeltas);
rawrangeDiff(3) = max(vrawdeltas);
nrTotal = max(find(res.onsetFlipTime > 0)); %#ok<MXFND>
fprintf('Comments: %s\n', res.Comments);
if (nrCorrupt > 0) || (nrDisagree > 0) || (nrSkipped > 0)
fprintf('Number of skipped frames: %i\n', nrSkipped);
fprintf('Number of corrupted frames: %i\n', nrCorrupt);
fprintf('Number of > 1.6 msecs disagreement meas vs. flip: %i\n', nrDisagree);
fprintf('Number of flip >= 0.66 ifi later than meas. (Excessive wakeup-delay): %i\n', nrDelayed);
end
fprintf('Valid high-precision frames: Mean difference %f msecs, stddev %f msecs, range %f msecs.\n', meanDiff, stdDiff, rangeDiff(1));
fprintf('Valid raw-precision frames: Mean difference %f msecs, stddev %f msecs, range %f msecs.\n', rawmeanDiff, rawstdDiff, rawrangeDiff(1));
fprintf('\n\n\n');
return;
end
|