This file is indexed.

/usr/share/pyshared/pychess/Players/PyChess.py is in pychess 0.12~beta3-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
#!/usr/bin/pypy -u

if __name__ == "__main__":
    print "feature done=0"

from pychess.Utils import const
const.STANDARD_LOGGING = True

from pychess.System.prefix import addDataPrefix
from pychess.Utils.book import getOpenings
from pychess.Utils.const import *
from pychess.Utils.lutils import lsearch
from pychess.Utils.lutils.ldata import MAXPLY
from pychess.Utils.lutils.lsearch import alphaBeta
from pychess.Utils.lutils.LBoard import LBoard
from pychess.Utils.lutils.lmove import listToSan, toSAN
from time import time
import gettext
import pychess
import random
import sys

gettext.install("pychess", localedir=addDataPrefix("lang"), unicode=1)


class PyChess:
    def __init__ (self):
        self.sd = MAXPLY
        self.skipPruneChance = 0
        
        self.clock = [0, 0]
        self.increment = [0, 0]
        self.movestogo = 0
        self.searchtime = 0
        self.scr = 0 # The current predicted score. Used when accepting draw offers
        self.playingAs = WHITE
        self.ponder = False # Currently unused
        self.post = False
        self.debug = True
    
    def makeReady(self):
        try:
            import psyco
            psyco.bind(alphaBeta)
        except ImportError:
            pass
    
    #===========================================================================
    # Play related
    #===========================================================================
    
    def __remainingMovesA (self):
        # Based on regression of a 180k games pgn
        x = self.board.plyCount
        return -1.71086e-12*x**6 \
               +1.69103e-9*x**5 \
               -6.00801e-7*x**4 \
               +8.17741e-5*x**3 \
               +2.91858e-4*x**2 \
               -0.94497*x \
               +78.8979
    
    def __remainingMovesB (self):
        # We bet a game will be around 80 moves
        x = self.board.plyCount
        return max(80-x,4)
    
    def __getBestOpening (self):
        totalWeight = 0
        choice = None
        for move, weight, histGames, histScore in getOpenings(self.board):
            totalWeight += weight
            if totalWeight == 0:
                break
            if not move or random.randrange(totalWeight) < weight:
                choice = move
        return choice
    
    def __go (self, ondone=None):
        """ Finds and prints the best move from the current position """
        
        mv = self.__getBestOpening()
        if mv:
            mvs = [mv]
        
        if not mv:
               
            lsearch.skipPruneChance = self.skipPruneChance
            lsearch.searching = True
            
            timed = self.basetime > 0
            
            if self.searchtime > 0:
                usetime = self.searchtime
            else:
                usetime = self.clock[self.playingAs] / self.__remainingMovesA()
                if self.clock[self.playingAs] < 6*60+self.increment[self.playingAs]*40:
                    # If game is blitz, we assume 40 moves rather than 80
                    usetime *= 2
                # The increment is a constant. We'll use this always
                usetime += self.increment[self.playingAs]
                if usetime < 0.5:
                    # We don't wan't to search for e.g. 0 secs
                    usetime = 0.5

            prevtime = 0
            starttime = time()
            lsearch.endtime = starttime + usetime if timed else sys.maxint
            if self.debug:
                if timed:
                    print "# Time left: %3.2f s; Planing to think for %3.2f s" % (self.clock[self.playingAs], usetime)
                else:
                    print "# Searching to depth %d without timelimit" % self.sd

            for depth in range(1, self.sd+1):
                # Heuristic time saving
                # Don't waste time, if the estimated isn't enough to complete next depth
                if timed and usetime <= prevtime*4 and usetime > 1:
                    break
                lsearch.timecheck_counter = lsearch.TIMECHECK_FREQ
                search_result = alphaBeta(self.board, depth)
                if lsearch.searching:
                    mvs, self.scr = search_result
                    if time() > lsearch.endtime:
                        break
                    if self.post:
                        pv = " ".join(listToSan(self.board, mvs))
                        time_cs = int(100 * (time()-starttime))
                        print depth, self.scr, time_cs, lsearch.nodes, pv
                else:
                    # We were interrupted
                    if depth == 1:
                        mvs, self.scr = search_result
                    break
                prevtime = time()-starttime - prevtime
                
                self.clock[self.playingAs] -= time() - starttime - self.increment[self.playingAs]
            
            if not mvs:
                if not lsearch.searching:
                    # We were interupted
                    lsearch.nodes = 0
                    return
                
                # This should only happen in terminal mode
                
                if self.scr == 0:
                    print "result %s" % reprResult[DRAW]
                elif self.scr < 0:
                    if self.board.color == WHITE:
                        print "result %s" % reprResult[BLACKWON]
                    else: print "result %s" % reprResult[WHITEWON]
                else:
                    if self.board.color == WHITE:
                        print "result %s" % reprResult[WHITEWON]
                    else: print "result %s" % reprResult[BLACKWON]
                return
            
            lsearch.nodes = 0
            lsearch.searching = False
        
        move = mvs[0]
        sanmove = toSAN(self.board, move)
        if ondone: ondone(sanmove)
        return sanmove
    
    def __analyze (self):
        """ Searches, and prints info from, the position as stated in the cecp
            protocol """
        
        start = time()
        lsearch.endtime = sys.maxint
        lsearch.searching = True
        
        for depth in xrange (1, self.sd):
            if not lsearch.searching:
                break
            t = time()
            
            mvs, scr = alphaBeta (self.board, depth)
            
            pv = " ".join(listToSan(self.board, mvs))
            time_cs = int(100 * (time() - start))
            print depth, scr, time_cs, lsearch.nodes, pv
            
            lsearch.nodes = 0
    
################################################################################
# main                                                                         #
################################################################################

if __name__ == "__main__":
    
    if len(sys.argv) == 1 or sys.argv[1:] == ["xboard"]:
        from pychess.Players.PyChessCECP import PyChessCECP
        pychess = PyChessCECP()
    
    elif len(sys.argv) == 5 and sys.argv[1] == "fics":
        from pychess.Players.PyChessFICS import PyChessFICS
        pychess = PyChessFICS(*sys.argv[2:])
        
    else:
        print "Unknown argument(s):", repr(sys.argv)
        sys.exit(0)
    
    pychess.makeReady()
    pychess.run()