This file is indexed.

/usr/share/pythia8-examples/examples/main83.cc is in pythia8-examples 8.1.86-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
// main83.cc is a part of the PYTHIA event generator.
// Copyright (C) 2014 Torbjorn Sjostrand.
// PYTHIA is licenced under the GNU GPL version 2, see COPYING for details.
// Please respect the MCnet Guidelines, see GUIDELINES for details.

// This program is written by Stefan Prestel.
// It illustrates how to do CKKW-L merging,
// see the Matrix Element Merging page in the online manual.

#include "Pythia8/Pythia.h"

using namespace Pythia8;

// Functions for histogramming
#include "fastjet/PseudoJet.hh"
#include "fastjet/ClusterSequence.hh"
#include "fastjet/CDFMidPointPlugin.hh"
#include "fastjet/CDFJetCluPlugin.hh"
#include "fastjet/D0RunIIConePlugin.hh"

//==========================================================================

// Find the Durham kT separation of the clustering from
// nJetMin --> nJetMin-1 jets in te input event

double pTfirstJet( const Event& event, int nJetMin, double Rparam) {

  double yPartonMax = 4.;

  // Fastjet analysis - select algorithm and parameters
  fastjet::Strategy               strategy = fastjet::Best;
  fastjet::RecombinationScheme    recombScheme = fastjet::E_scheme;
  fastjet::JetDefinition         *jetDef = NULL;
  // For hadronic collision, use hadronic Durham kT measure
  if(event[3].colType() != 0 || event[4].colType() != 0)
    jetDef = new fastjet::JetDefinition(fastjet::kt_algorithm, Rparam,
                                      recombScheme, strategy);
  // For e+e- collision, use e+e- Durham kT measure
  else
    jetDef = new fastjet::JetDefinition(fastjet::ee_kt_algorithm,
                                      recombScheme, strategy);
  // Fastjet input
  std::vector <fastjet::PseudoJet> fjInputs;
  // Reset Fastjet input
  fjInputs.resize(0);

  // Loop over event record to decide what to pass to FastJet
  for (int i = 0; i < event.size(); ++i) {
    // (Final state && coloured+photons) only!
    if ( !event[i].isFinal()
      || event[i].isLepton()
      || event[i].id() == 23
      || abs(event[i].id()) == 24
      || abs(event[i].y()) > yPartonMax)
      continue;

    // Store as input to Fastjet
    fjInputs.push_back( fastjet::PseudoJet (event[i].px(),
            event[i].py(), event[i].pz(),event[i].e() ) );
  }

  // Do nothing for empty input
  if (int(fjInputs.size()) == 0) {
    delete jetDef;
    return 0.0;
  }

  // Run Fastjet algorithm
  fastjet::ClusterSequence clustSeq(fjInputs, *jetDef);
  // Extract kT of first clustering
  double pTFirst = sqrt(clustSeq.exclusive_dmerge_max(nJetMin-1));

  delete jetDef;
  // Return kT
  return pTFirst;

}

//==========================================================================

// Class for user interaction with the merging

class MyMergingHooks : public MergingHooks {

private:

public:

  // Default constructor
  MyMergingHooks();
  // Destructor
  ~MyMergingHooks();

  // Functional definition of the merging scale
  virtual double tmsDefinition( const Event& event);

  // Function to dampen weights calculated from histories with lowest
  // multiplicity reclustered events that do not pass the ME cuts
  virtual double dampenIfFailCuts( const Event& inEvent );

  // Helper function for tms definition
  double myKTdurham(const Particle& RadAfterBranch,
           const Particle& EmtAfterBranch, int Type, double D );

};

//--------------------------------------------------------------------------

// Constructor
MyMergingHooks::MyMergingHooks() {}

// Desctructor
MyMergingHooks::~MyMergingHooks() {}

//--------------------------------------------------------------------------

double MyMergingHooks::dampenIfFailCuts( const Event& inEvent ){

  // Get pT for pure QCD 2->2 state
  double pT = 0.;
  for( int i=0; i < inEvent.size(); ++i)
    if(inEvent[i].isFinal() && inEvent[i].colType() != 0) {
      pT = sqrt(pow(inEvent[i].px(),2) + pow(inEvent[i].py(),2));
      break;
    }

  // Veto history if lowest multiplicity event does not pass ME cuts
  if(pT < 10.) return 0.;

  return 1.;

}

//--------------------------------------------------------------------------

// Definition of the merging scale

double MyMergingHooks::tmsDefinition( const Event& event){

  // Cut only on QCD partons!
  // Count particle types
  int nFinalColoured = 0;
  int nFinalNow =0;
  for( int i=0; i < event.size(); ++i) {
    if(event[i].isFinal()){
      if(event[i].id() != 23 && abs(event[i].id()) != 24)
        nFinalNow++;
      if( event[i].colType() != 0)
        nFinalColoured++;
    }
  }

  // Use MergingHooks in-built functions to get information on the hard process
  int nLeptons = nHardOutLeptons();
  int nQuarks  = nHardOutPartons();
  int nResNow  = nResInCurrent();

  // Check if photons, electrons etc. have been produced. If so, do not veto
  if(nFinalNow - ( (nLeptons+nQuarks)/2 - nResNow)*2 != nFinalColoured){
    // Sometimes, Pythia detaches the decay products even though no
    // resonance was put into the LHE file, to catch this, add another
    // if statement
    if(nFinalNow != nFinalColoured) return 0.;
  }

  // Check that one parton has been produced. If not (e.g. in MPI), do not veto
  int nMPI = infoPtr->nMPI();
  if(nMPI > 1) return 0.;

  // Declare kT algorithm parameters
  double Dparam = 0.4;
  int kTtype = -1;
  // Declare final parton vector
  vector <int> FinalPartPos;
  FinalPartPos.clear();
  // Search event record for final state partons
  for (int i=0; i < event.size(); ++i)
    if(event[i].isFinal() && event[i].colType() != 0)
      FinalPartPos.push_back(i);

  // Find minimal Durham kT in event, using own function: Check
  // definition of separation
  int type = (event[3].colType() == 0 && event[4].colType() == 0) ? 1 : kTtype;
  // Find minimal kT
  double ktmin = event[0].e();
  for(int i=0; i < int(FinalPartPos.size()); ++i){
    double kt12  = ktmin;
    // Compute separation to the beam axis for hadronic collisions
    if(type == -1 || type == -2) {
      double temp = event[FinalPartPos[i]].pT();
      kt12 = min(kt12, temp);
    }
    // Compute separation to other final state jets
    for(int j=i+1; j < int(FinalPartPos.size()); ++j) {
      double temp = kTdurham( event[FinalPartPos[i]], event[FinalPartPos[j]],
                      type, Dparam);
      kt12 = min(kt12, temp);
    }
    // Keep the minimal Durham separation
    ktmin = min(ktmin,kt12);
  }

  // Return minimal Durham kT
  return ktmin;

}

//--------------------------------------------------------------------------

// Function to compute durham y separation from Particle input

double MyMergingHooks::myKTdurham(const Particle& RadAfterBranch,
  const Particle& EmtAfterBranch, int Type, double D ){

  // Declare return variable
  double ktdur;
  // Save 4-momenta of final state particles
  Vec4 jet1 = RadAfterBranch.p();
  Vec4 jet2 = EmtAfterBranch.p();

  if( Type == 1) {
    // Get angle between jets for e+e- collisions, make sure that
    // -1 <= cos(theta) <= 1
    double costh;
    if (jet1.pAbs()*jet2.pAbs() <=0.) costh = 1.;
    else {
      costh = costheta(jet1,jet2);
    }
    // Calculate kt durham separation between jets for e+e- collisions
    ktdur = 2.0*min( pow(jet1.e(),2) , (pow(jet2.e(),2)) )*(1.0 - costh);
  } else if( Type == -1 ){
    // Get delta_eta and cosh(Delta_eta) for hadronic collisions
    double eta1 = 0.5*log( (jet1.e() + jet1.pz()) / (jet1.e() - jet1.pz()) );
    double eta2 = 0.5*log( (jet2.e() + jet2.pz()) / (jet2.e() - jet2.pz()) );
    // Get delta_phi and cos(Delta_phi) for hadronic collisions
    double pt1 = sqrt( pow(jet1.px(),2) + pow(jet1.py(),2) );
    double pt2 = sqrt( pow(jet2.px(),2) + pow(jet2.py(),2) );
    double cosdPhi = ( jet1.px()*jet2.px() + jet1.py()*jet2.py() ) / (pt1*pt2);
    double dPhi = acos( cosdPhi );
    // Calculate kT durham like fastjet
     ktdur = min( pow(pt1,2),pow(pt2,2) )
           * ( pow(eta1-eta2,2) + pow(dPhi,2) ) / pow(D,2);
  } else if( Type == -2 ){
    // Get delta_eta and cosh(Delta_eta) for hadronic collisions
    double eta1 = 0.5*log( (jet1.e() + jet1.pz()) / (jet1.e() - jet1.pz()) );
    double eta2 = 0.5*log( (jet2.e() + jet2.pz()) / (jet2.e() - jet2.pz()) );
     double coshdEta = cosh( eta1 - eta2 );
    // Get delta_phi and cos(Delta_phi) for hadronic collisions
    double pt1 = sqrt( pow(jet1.px(),2) + pow(jet1.py(),2) );
    double pt2 = sqrt( pow(jet2.px(),2) + pow(jet2.py(),2) );
    double cosdPhi = ( jet1.px()*jet2.px() + jet1.py()*jet2.py() ) / (pt1*pt2);
    // Calculate kT durham separation "SHERPA-like"
     ktdur = 2.0*min( pow(pt1,2),pow(pt2,2) )
           * ( coshdEta - cosdPhi ) / pow(D,2);
  } else {
    ktdur = 0.0;
  }
  // Return kT
  return sqrt(ktdur);
}

//==========================================================================

// Example main programm to illustrate merging

int main( int argc, char* argv[] ){

  // Check that correct number of command-line arguments
  if (argc != 4) {
    cerr << " Unexpected number of command-line arguments. \n You are"
         << " expected to provide the arguments \n"
         << " 1. Input file for settings \n"
         << " 2. Full name of the input LHE file (with path) \n"
         << " 3. Path for output histogram files \n"
         << " Program stopped. " << endl;
    return 1;
  }

  Pythia pythia;

  // Input parameters:
  //  1. Input file for settings
  //  2. Path to input LHE file
  //  3. OUtput histogram path
  pythia.readFile(argv[1]);
  string iPath = string(argv[2]);
  string oPath = string(argv[3]);

  // Number of events
  int nEvent = pythia.mode("Main:numberOfEvents");

  // Construct user inut for merging
  MergingHooks* myMergingHooks = new MyMergingHooks();
  pythia.setMergingHooksPtr( myMergingHooks );

  // For ISR regularisation off
  pythia.settings.forceParm("SpaceShower:pT0Ref",0.);

  // Declare histograms
  Hist histPTFirst("pT of first jet",100,0.,100.);
  Hist histPTSecond("pT of second jet",100,0.,100.);

  // Read in ME configurations
  pythia.init(iPath,false);

  if(pythia.flag("Main:showChangedSettings")) {
    pythia.settings.listChanged();
  }

  // Start generation loop
  for( int iEvent=0; iEvent<nEvent; ++iEvent ){

    // Generate next event
    if( ! pythia.next()) continue;

    // Get CKKWL weight of current event
    double weight = pythia.info.mergingWeight();

    // Fill bins with CKKWL weight
    double pTfirst = pTfirstJet(pythia.event,1, 0.4);
    double pTsecnd = pTfirstJet(pythia.event,2, 0.4);
    histPTFirst.fill( pTfirst, weight);
    histPTSecond.fill( pTsecnd, weight);

    if(iEvent%1000 == 0) cout << iEvent << endl;

  } // end loop over events to generate

  // print cross section, errors
  pythia.stat();

  // Normalise histograms
  double norm = 1.
              * pythia.info.sigmaGen()
              * 1./ double(nEvent);

  histPTFirst           *= norm;
  histPTSecond          *= norm;

  // Get the number of jets in the LHE file from the file name
  string jetsInLHEF = iPath.substr(iPath.size()-5, iPath.size());
  jetsInLHEF = jetsInLHEF.substr(0, jetsInLHEF.size()-4);

  // Write histograms to dat file. Use "jetsInLHEF" to label the files
  // Once all the samples up to the maximal desired jet multiplicity from the
  // matrix element are run, add all histograms to produce a
  // matrix-element-merged prediction

  ofstream write;
  stringstream suffix;
  suffix << jetsInLHEF << "_wv.dat";

  // Write histograms to file
  write.open( (char*)(oPath + "PTjet1_" + suffix.str()).c_str());
  histPTFirst.table(write);
  write.close();

  write.open( (char*)(oPath + "PTjet2_" + suffix.str()).c_str());
  histPTSecond.table(write);
  write.close();


  delete myMergingHooks;
  return 0;

  // Done
}