/usr/share/pyshared/csa/_elementary.py is in python-csa 0.1.0-1.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 | #
# This file is part of the Connection-Set Algebra (CSA).
# Copyright (C) 2010,2011,2012 Mikael Djurfeldt
#
# CSA is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# CSA is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
import random
import numpy
import copy
import connset as cs
import intervalset as iset
from csaobject import *
class FullMask (cs.IntervalSetMask):
tag = 'full'
def __init__ (self):
cs.IntervalSetMask.__init__ (self, iset.N, iset.N)
self.name = FullMask.tag
CSAObject.tag_map[CSA + FullMask.tag] = (self, SINGLETON)
def __call__ (self, N0, N1 = None):
if N1 == None:
N1 = N0
return cs.FiniteISetMask (iset.IntervalSet ((0, N0 - 1)), \
iset.IntervalSet ((0, N1 - 1)))
class OneToOne (cs.Mask):
tag = 'oneToOne'
def __init__ (self):
cs.Mask.__init__ (self)
self.name = OneToOne.tag
CSAObject.tag_map[CSA + OneToOne.tag] = (self, SINGLETON)
def iterator (self, low0, high0, low1, high1, state):
for i in xrange (max (low0, low1), min (high0, high1)):
yield (i, i)
class ConstantRandomMask (cs.Mask):
tag = 'randomMask'
def __init__ (self, p):
cs.Mask.__init__ (self)
self.p = p
self.state = random.getstate ()
self.name = ConstantRandomMask.tag
def startIteration (self, state):
random.setstate (self.state)
return self
def iterator (self, low0, high0, low1, high1, state):
for j in xrange (low1, high1):
for i in xrange (low0, high0):
if random.random () < self.p:
yield (i, j)
def repr (self):
return 'random(%s)' % self.p
def _to_xml (self):
return CSAObject.apply (ConstantRandomMask.tag, self.p)
registerTag (ConstantRandomMask.tag, ConstantRandomMask, 1)
class SampleNRandomOperator (cs.Operator):
tag = 'random_N'
def __init__ (self, N):
self.N = N
def __mul__ (self, other):
assert isinstance (other, cs.Finite) \
and isinstance (other, cs.Mask), \
'expected finite mask'
return SampleNRandomMask (self.N, other)
def repr (self):
return 'random(N = %s)' % self.N
def _to_xml (self):
return CSAObject.apply (SampleNRandomOperator.tag, self.N)
registerTag (SampleNRandomOperator.tag, SampleNRandomOperator, 1)
class SampleNRandomMask (cs.Finite,cs.Mask):
# The algorithm based on first sampling the number of connections
# per partition has been arrived at through discussions with Hans
# Ekkehard Plesser.
#
def __init__ (self, N, mask):
cs.Mask.__init__ (self)
self.N = N
assert isinstance (mask, cs.FiniteISetMask), \
'SampleNRandomMask currently only operates on FiniteISetMask:s'
self.mask = mask
self.randomState = random.getstate ()
self.npRandomState = numpy.random.get_state ()
def bounds (self):
return self.mask.bounds ()
def startIteration (self, state):
obj = copy.copy (self) # local state: N, N0, perTarget, sources
random.setstate (self.randomState)
obj.isPartitioned = False
if 'partitions' in state:
obj.isPartitioned = True
partitions = map (self.mask.intersection, state['partitions'])
sizes = map (len, partitions)
total = sum (sizes)
# The following yields the same result on all processes.
# We should add a seed function to the CSA.
if 'seed' in state:
seed = state['seed']
else:
seed = 'SampleNRandomMask'
numpy.random.seed (hash (seed))
N = numpy.random.multinomial (self.N, numpy.array (sizes) \
/ float (total))
obj.N = N[state['selected']]
obj.mask = partitions[state['selected']]
assert isinstance (obj.mask, cs.FiniteISetMask), \
'SampleNRandomMask iterator only handles finite IntervalSetMask partitions'
obj.mask = obj.mask.startIteration (state)
obj.N0 = len (obj.mask.set0)
obj.lastBound0 = False
N1 = len (obj.mask.set1)
numpy.random.set_state (self.npRandomState)
obj.perTarget = numpy.random.multinomial (obj.N, [1.0 / N1] * N1)
return obj
def iterator (self, low0, high0, low1, high1, state):
m = self.mask.set1.count (0, low1)
if self.isPartitioned and m > 0:
# "replacement" for a proper random.jumpahead (n)
# This is required so that different partitions of this
# mask aren't produced using the same stream of random
# numbers.
random.seed (random.getrandbits (32) + m)
if self.lastBound0 != (low0, high0):
self.lastBound0 = (low0, high0)
self.sources = []
for i in self.mask.set0.boundedIterator (low0, high0):
self.sources.append (i)
nSources = len (self.sources)
for j in self.mask.set1.boundedIterator (low1, high1):
s = []
for k in xrange (0, self.perTarget[m]):
i = random.randint (0, self.N0 - 1)
if i < nSources:
s.append (self.sources[i])
s.sort ()
for i in s:
yield (i, j)
m += 1
def repr (self):
return self._repr_applyop ('random(N=%s)' % self.N, self.mask)
def _to_xml (self):
return E ('apply',
E ('times'),
CSAObject.apply (SampleNRandomOperator.tag, self.N),
self.mask._to_xml ())
class FanInRandomOperator (cs.Operator):
tag = 'random_fanIn'
def __init__ (self, fanIn):
self.fanIn = fanIn
def __mul__ (self, other):
assert isinstance (other, cs.Finite) \
and isinstance (other, cs.Mask), \
'expected finite mask'
return FanInRandomMask (self.fanIn, other)
def repr (self):
return 'random(fanIn=%s)' % self.fanIn
def _to_xml (self):
return CSAObject.apply (FanInRandomOperator.tag, self.fanIn)
registerTag (FanInRandomOperator.tag, FanInRandomOperator, 1)
# This code is copied and modified from SampleNRandomMask
# *fixme* refactor code and eliminate code duplication
class FanInRandomMask (cs.Finite, cs.Mask):
# The algorithm based on first sampling the number of connections
# per partition has been arrived at through discussions with Hans
# Ekkehard Plesser.
#
def __init__ (self, fanIn, mask):
cs.Mask.__init__ (self)
self.fanIn = fanIn
assert isinstance (mask, cs.FiniteISetMask), \
'FanInRandomMask currently only operates on FiniteISetMask:s'
self.mask = mask
self.randomState = random.getstate ()
def bounds (self):
return self.mask.bounds ()
def startIteration (self, state):
obj = copy.copy (self) # local state: N, N0, perTarget, sources
random.setstate (self.randomState)
obj.isPartitioned = False
if 'partitions' in state:
obj.isPartitioned = True
partitions = map (self.mask.intersection, state['partitions'])
# The following yields the same result on all processes.
# We should add a seed function to the CSA.
if 'seed' in state:
seed = state['seed']
else:
seed = 'FanInRandomMask'
# Numpy.random.seed requires unsigned integer
numpy.random.seed (abs (hash (seed)))
selected = state['selected']
obj.mask = partitions[selected]
assert isinstance (obj.mask, cs.FiniteISetMask), \
'FanInRandomMask iterator only handles finite IntervalSetMask partitions'
obj.mask = obj.mask.startIteration (state)
obj.N0 = len (obj.mask.set0)
obj.lastBound0 = False
if obj.isPartitioned:
obj.perTarget = []
for j in obj.mask.set1:
size = 0
sourceDist = numpy.zeros (len (partitions))
for k in xrange (len (partitions)):
if j in partitions[k].set1:
sourceDist[k] = len (partitions[k].set0)
sourceDist /= sum (sourceDist)
dist = numpy.random.multinomial (self.fanIn, sourceDist)
obj.perTarget.append (dist[selected])
else:
obj.perTarget = [self.fanIn] * len (obj.mask.set1)
return obj
def iterator (self, low0, high0, low1, high1, state):
m = self.mask.set1.count (0, low1)
if self.isPartitioned and m > 0:
# "replacement" for a proper random.jumpahead (n)
# This is required so that different partitions of this
# mask aren't produced using the same stream of random
# numbers.
random.seed (random.getrandbits (32) + m)
if self.lastBound0 != (low0, high0):
self.lastBound0 = (low0, high0)
self.sources = []
for i in self.mask.set0.boundedIterator (low0, high0):
self.sources.append (i)
nSources = len (self.sources)
for j in self.mask.set1.boundedIterator (low1, high1):
s = []
for k in xrange (0, self.perTarget[m]):
i = random.randint (0, self.N0 - 1)
if i < nSources:
s.append (self.sources[i])
s.sort ()
for i in s:
yield (i, j)
m += 1
def repr (self):
return self._repr_applyop ('random(fanIn=%s)' % self.fanIn, self.mask)
def _to_xml (self):
return E ('apply',
E ('times'),
CSAObject.apply (FanInRandomOperator.tag, self.fanIn),
self.mask._to_xml ())
class FanOutRandomOperator (cs.Operator):
tag = 'random_fanOut'
def __init__ (self, fanOut):
self.fanOut = fanOut
def __mul__ (self, other):
assert isinstance (other, cs.Finite) \
and isinstance (other, cs.Mask), \
'expected finite mask'
return FanInRandomMask (self.fanOut, other.transpose ()).transpose ()
def repr (self):
return 'random(fanOut=%s)' % self.fanOut
def _to_xml (self):
return CSAObject.apply (FanOutRandomOperator.tag, self.fanOut)
registerTag (FanOutRandomOperator.tag, FanOutRandomOperator, 1)
|