This file is indexed.

/usr/share/pyshared/csa/intervalset.py is in python-csa 0.1.0-1.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
#
#  This file is part of the Connection-Set Algebra (CSA).
#  Copyright (C) 2010,2011,2012 Mikael Djurfeldt
#
#  CSA is free software; you can redistribute it and/or modify
#  it under the terms of the GNU General Public License as published by
#  the Free Software Foundation; either version 3 of the License, or
#  (at your option) any later version.
#
#  CSA is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#
#  You should have received a copy of the GNU General Public License
#  along with this program.  If not, see <http://www.gnu.org/licenses/>.
#

import sys

from csaobject import *

infinity = sys.maxint - 1

# Interval sets are represented as ordered lists of closed intervals
#
class IntervalSet (CSAObject):
    tag = 'intervalset'
    
    @staticmethod
    # return true if tuple i represents a well-formed interval
    def goodInterval (i):
        return len (i) == 2 \
               and isinstance (i[0], int) \
               and isinstance (i[1], int) \
               and i[0] <= i[1]

    @staticmethod
    def xrangeToIntervals (x):
        if not x:
            return []
        elif len (x) == 1:
            return [(x[0], x[0])]
        elif x[1] - x[0] == 1:
            return [(x[0], x[-1])]
        else:
            return ((e, e) for e in x)

    @staticmethod
    def coerce (s):
        if not isinstance (s, list):
            s = [ s ]
            
        res = []
        for x in s:
            if isinstance (x, tuple):
                assert IntervalSet.goodInterval (x), 'malformed interval'
                res.append (x)
            elif isinstance (x, int):
                res.append ((x, x))
            elif isinstance (x, xrange):
                res += IntervalSet.xrangeToIntervals (x)
            else:
                raise TypeError, "can't interpret element as interval"
        s = res

        s.sort ()

        # merge intervals
        # by construction we know that i[0] <= i[1] for i in s
        res = []
        N = 0
        if s:
            lastLower = s[0][0]
            lastUpper = s[0][1]

            assert lastLower >= 0, 'only positive values allowed'

            for i in s[1:]:
                assert lastLower < i[0] and lastUpper < i[0], 'intervals overlap'
                if i[0] - lastUpper == 1:
                    lastUpper = i[1]
                else:
                    res.append ((lastLower, lastUpper))
                    N += 1 + lastUpper - lastLower
                    lastLower = i[0]
                    lastUpper = i[1]
            res.append ((lastLower, lastUpper))
            N += 1 + lastUpper - lastLower

        return (res, N)
    
    def __init__ (self, s = [], intervals = None, nIntegers = None):
        if intervals:
            self.intervals = intervals
            self.nIntegers = nIntegers
        else:
            (self.intervals, self.nIntegers) = self.coerce (s)

    def repr (self):
        return 'IntervalSet(%r)' % self.intervals

    def __len__ (self):
        return self.nIntegers

    def __contains__ (self, n):
        for i in self.intervals:
            if n > i[1]:
                continue
            elif n >= i[0]:
                return True
            else:
                return False
        return False

    def __iter__ (self):
        for i in self.intervals:
            for e in xrange (i[0], i[1] + 1):
                yield e

    def __invert__ (self):
        return ComplementaryIntervalSet (intervals = self.intervals, \
                                         nIntegers = self.nIntegers)

    def __add__ (self, other):
        if not isinstance (other, IntervalSet):
            other = IntervalSet (other)
        return self.union (other)

    def __radd__ (self, other):
        return IntervalSet (other).union (self)

    def __sub__ (self, other):
        if not isinstance (other, IntervalSet):
            other = IntervalSet (other)
        return self.intersection (~other)

    def __rsub__ (self, other):
        return IntervalSet (other).intersection (~self)

    def __mul__ (self, other):
        if not isinstance (other, IntervalSet):
            other = IntervalSet (other)
        return self.intersection (other)

    def __rmul__ (self, other):
        return IntervalSet (other).intersection (self)

    def finite (self):
        return True

    def shift (self, N):
        if not self or N == 0:
            return self

        intervals = []
        nIntegers = self.nIntegers
        for (i, j) in self.intervals:
            i += N
            j += N
            if i >= 0:
                intervals.append ((i, j))
            elif j >= 0:
                intervals.append ((0, j))
                nIntegers += i
                
        return IntervalSet (intervals = intervals, nIntegers = nIntegers)

    def intervalIterator (self):
        return iter (self.intervals)

    def boundedIterator (self, low, high):
        iterator = iter (self.intervals)
        i = iterator.next ()
        while i[1] < low:
            i = iterator.next ()
        while i[0] < high:
            for e in xrange (max (low, i[0]), min (i[1] + 1, high)):
                yield e
            i = iterator.next ()

    def count (self, low, high):
        iterator = iter (self.intervals)
        c = 0
        try:
            i = iterator.next ()
            while i[1] < low:
                i = iterator.next ()
            while i[0] < high:
                c += min (i[1] + 1, high) - max (low, i[0])
                i = iterator.next ()
        except StopIteration:
            pass
        return c

    def min (self):
        return self.intervals[0][0]

    def max (self):
        return self.intervals[-1][1]

    def intersection (self, other):
        res = []
        N = 0
        iter0 = self.intervalIterator ()
        iter1 = other.intervalIterator ()
        try:
            i0 = iter0.next ()
            i1 = iter1.next ()
            while True:
                if i0[1] <= i1[1]:
                    if i0[1] >= i1[0]:
                        lower = max (i0[0], i1[0])
                        res.append ((lower, i0[1]))
                        N += 1 + i0[1] - lower
                    i0 = iter0.next ()
                else:
                    if i1[1] >= i0[0]:
                        lower = max (i0[0], i1[0])
                        res.append ((lower, i1[1]))
                        N += 1 + i1[1] - lower
                    i1 = iter1.next ()
        except StopIteration:
            pass
        iset = IntervalSet ()
        iset.intervals = res
        iset.nIntegers = N
        return iset

    def union (self, other):
        if isinstance (other, ComplementaryIntervalSet):
            return ~(~self).intersection (~other)
        
        iset = IntervalSet ()
        if not other.nIntegers:
            iset.intervals = list (self.intervals)
            iset.nIntegers = self.nIntegers
            return iset
        if not self.nIntegers:
            iset.intervals = list (other.intervals)
            iset.nIntegers = other.nIntegers
            return iset
        res = []
        N = 0
        iter0 = self.intervalIterator ()
        iter1 = other.intervalIterator ()
        i0 = iter0.next ()
        i1 = iter1.next ()
        if i0[0] <= i1[0]:
            (lower, upper) = i0
        else:
            (lower, upper) = i1
        try:
            while True:
                if i0[0] <= i1[0]:
                    if i0[0] <= upper + 1:
                        if i0[1] > upper:
                            upper = i0[1]
                    else:
                        res.append ((lower, upper))
                        N += 1 + upper - lower
                        (lower, upper) = i0
                    try:
                        i0 = iter0.next ()
                    except StopIteration:
                        if i1[0] <= upper + 1:
                            if i1[1] > upper:
                                upper = i1[1]
                            i1 = (lower, upper)
                        else:
                            res.append ((lower, upper))
                            N += 1 + upper - lower
                        while True:
                            res.append (i1)
                            N += 1 + i1[1] - i1[0]
                            i1 = iter1.next ()
                else:
                    if i1[0] <= upper + 1:
                        if i1[1] > upper:
                            upper = i1[1]
                    else:
                        res.append ((lower, upper))
                        N += 1 + upper - lower
                        (lower, upper) = i1
                    try:
                        i1 = iter1.next ()
                    except StopIteration:
                        if i0[0] <= upper + 1:
                            if i0[1] > upper:
                                upper = i0[1]
                            i0 = (lower, upper)
                        else:
                            res.append ((lower, upper))
                            N += 1 + upper - lower
                        while True:
                            res.append (i0)
                            N += 1 + i0[1] - i0[0]
                            i0 = iter0.next ()
        except StopIteration:
            pass
        iset.intervals = res
        iset.nIntegers = N
        return iset

    def _to_xml (self):
        intervals = [ E ('interval', E ('cn', str (i)), E ('cn', str (j)))
                      for (i, j) in self.intervals ]
        return E (IntervalSet.tag, *intervals)

    @classmethod
    def from_xml (cls, element, env = {}):
        intervals = []
        for ivalElement in element.getchildren ():
            ival = ivalElement.getchildren ()
            intervals.append ((int (ival[0].text), int (ival[1].text)))
        return IntervalSet (intervals)

CSAObject.tag_map[CSA + IntervalSet.tag] = (IntervalSet, CUSTOM)


class ComplementaryIntervalSet (IntervalSet):
    def __init__ (self, s = [], intervals = None, nIntegers = None):
        IntervalSet.__init__ (self, s, intervals, nIntegers)

    def repr (self):
        if not self.intervals:
            return 'N'
        else:
            return '~IntervalSet(%r)' % self.intervals

    def __nonzero__ (self):
        return True

    def __len__ (self):
        raise RuntimeError, 'ComplementaryIntervalSet has infinite length'
    
    def __contains__ (self, n):
        for i in self.intervals:
            if n < i[0]:
                continue
            elif n <= i[1]:
                return False
            else:
                return True
        return True

    def __iter__ (self):
        raise RuntimeError, "can't interate over ComplementaryIntervalSet"

    def __invert__ (self):
        return IntervalSet (intervals = self.intervals, \
                            nIntegers = self.nIntegers)

    def finite (self):
        return False

    def shift (self, N):
        iset = IntervalSet (intervals = self.intervals, \
                            nIntegers = self.nIntegers).shift (N)
        return ComplementaryIntervalSet (intervals = iset.intervals, \
                                         nIntegers = iset.nIntegers)

    def intervalIterator (self):
        start = 0
        for i in self.intervals:
            if i[0] > 0:
                yield (start, i[0] - 1)
            start = i[1] + 1
        yield (start, infinity)

    def boundedIterator (self, low, high):
        raise RuntimeError, "can't interate over ComplementaryIntervalSet"

    def count (self, low, high):
        iterator = iter (self.intervals)
        c = 0
        prev = low
        try:
            i = iterator.next ()
            while i[1] < low:
                i = iterator.next ()
            while i[0] < high:
                c += i[0] - prev
                prev = i[1] + 1
                i = iterator.next ()
        except StopIteration:
            pass
        if prev < high:
            c += high - prev
        return c

    def min (self):
        if not self.intervals or self.intervals[0][0] > 0:
            return 0
        else:
            return self.intervals[0][1] + 1

    def max (self):
        raise RuntimeError, 'the maximum of a ComplementaryIntervalSet is infinity'

    def intersection (self, other):
        if isinstance (other, ComplementaryIntervalSet):
            return ~(~self).union (~other)
        else:
            return IntervalSet.intersection (self, other)

    def union (self, other):
        return ~(~self).intersection (~other)

    def _to_xml (self):
        if not self.intervals:
            return E ('N')
        else:
            return E ('apply', E ('complement'), IntervalSet._to_xml (self))


N = ComplementaryIntervalSet ([])

CSAObject.tag_map[CSA + 'N'] = (N, SINGLETON)