This file is indexed.

/usr/lib/python2.7/dist-packages/csb/bio/fragments/__init__.py is in python-csb 1.2.3+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
"""
APIs for working with protein structure fragments and libraries.

This package contains the nuts and bolts of HHfrag. Everything here revolves
around the L{Target} class, which describes a protein structure prediction
target. One typically assigns fragments (L{Assignment}s) to the target and then
builds a fragment library with L{RosettaFragsetFactory}.
"""

import os
import numpy

import csb.io
import csb.core
import csb.bio.utils
import csb.bio.structure
import csb.bio.sequence

from csb.bio.structure import SecondaryStructure
from csb.bio.io.wwpdb import FileSystemStructureProvider, StructureParser


class FragmentTypes(object):
    
    HHfrag = 'TH'
    Rosetta = 'NN'
    ISites = 'IS'
    StaticHH = 'HH'
    
class Metrics(object):
    
    RMSD = 'rmsd_to'
    NORMALIZED_RMSD = 'nrmsd_to'
    MDA = 'mda_to'
    
RANDOM_RMSD = {  5: 1.8749005857255376,  6: 2.4314283686276261,  7: 2.9021135267789608,  8: 3.2477716200172715,  9: 3.5469606556031708, 10: 3.8295465524456329, 
                11: 4.1343107114131783, 12: 4.3761697929053014, 13: 4.6707299668248394, 14: 4.9379016881069733, 15: 5.1809028645084911, 16: 5.4146957142595662, 
                17: 5.7135948448156988, 18: 5.9597935432566782, 19: 6.1337340535741962, 20: 6.3962825155503271, 21: 6.6107937773415166, 22: 6.8099096274123401, 
                23: 7.0435583846849639, 24: 7.2160956482560970, 25: 7.4547896324594962, 26: 7.6431870072434211, 27: 7.8727812194173836, 28: 8.0727393298443637, 
                29: 8.2551450998965326, 30: 8.4413583511786587, 31: 8.5958719774122052, 32: 8.7730435506242408, 33: 8.9970648837941649, 34: 9.1566521405105163, 
                35: 9.2828620878454728, 36: 9.4525824357923405, 37: 9.6322126445253300, 38: 9.7851684750961176, 39: 9.9891454649821476, 40: 10.124373939352028, 
                41: 10.284348528344765, 42: 10.390457305096271, 43: 10.565792044674239, 44: 10.676532740033737, 45: 10.789537132283652, 46: 11.004475543757550, 
                47: 11.064541647783571, 48: 11.231219875286985, 49: 11.319222637391441, 50: 11.485478165340824, 51: 11.607522494435521, 52: 11.700268836069840, 
                53: 11.831245255954073, 54: 11.918975893263905 }     
    
class FragmentMatch(object):
    """
    Base class, representing a match between a fragment and its target.
    """
    
    def __init__(self, id, qstart, qend, probability, rmsd, tm_score, qlength):
        
        self._id = id
        self._qstart = qstart
        self._qend = qend
        self._probability = probability        
        self._rmsd = rmsd
        self._tm_score = tm_score
        self._qlength = qlength
        
    @property
    def id(self):
        return self._id

    @property
    def qstart(self):
        return self._qstart
    
    @property
    def qend(self):
        return self._qend
    
    @property
    def qlength(self):
        return self._qlength    
    
    @property
    def rmsd(self):
        return self._rmsd
    
    @property
    def tm_score(self):
        return self._tm_score
    
    @property
    def probability(self):
        return self._probability
            
    @property
    def length(self):
        return self.qend - self.qstart + 1
    
    @property
    def source_id(self):
        raise NotImplementedError()
        
    @property
    def start(self):
        raise NotImplementedError()

    @property
    def end(self):
        raise NotImplementedError()

        
class TorsionAnglePredictor(object):
    """
    Fragment-based phi/psi angles predictor.
    
    @param target: target protein, containing fragment assignments
    @type target: L{Target}
    @param threshold: RMSD distance threshold for L{FragmentCluster}-based filtering
    @type threshold: float
    @param extend: pick alternative, longer cluster reps, if possible
    @type extend: bool
    @param init: populate all L{FragmentCluster}s on instantiation. If False, this step
                 will be performed on demand (the first time C{predictor.compute()} is invoked)
                 
    @note: if C{init} is False, the first call to C{predictor.compute()} might take a long
           time. Subsequent calls will be very fast.
    """
    
    def __init__(self, target, threshold=1.5, extend=False, init=False):
        
        if not isinstance(target, Target):
            raise TypeError(target)
        if target.matches.length == 0:
            raise ValueError('This target has no fragment assignments')
        
        self._target = target
        self._threshold = float(threshold)
        self._extend = bool(extend)
        
        self._initialized = False
        self._reps = {}
        self._clusters = {}
            
        if init:
            self.init()
        
    @property
    def target(self):
        return self._target

    @property
    def threshold(self):
        return self._threshold
    
    @property
    def extend(self):
        return self._extend
    
    def init(self):
        """
        Compute and cache all L{FragmentCluster}s.
        """

        self._reps = {}
        self._clusters = {}
                
        for residue in self.target.residues:
            cluster = self._filter(residue)
            
            if cluster is not None:
                rep = cluster.centroid()
                if rep.has_alternative:
                    rep.exchange()
                    
                self._reps[residue.native.rank] = rep
                self._clusters[residue.native.rank] = cluster.items
                
        self._initialized = True      
        
    def _filter(self, residue):
        
        try:
            nodes = []
            for ai in residue.assignments:
                node = ClusterNode.create(ai.fragment)
                nodes.append(node)
                
            cluster = FragmentCluster(nodes, threshold=self.threshold)
            cluster.shrink(minitems=0)
    
            return cluster
        
        except (ClusterExhaustedError, ClusterDivergingError):
            return None
       
    def _residue(self, rank):
        
        for r in self._target.residues:
            if r.native.rank == rank:
                return r
        
        raise ValueError('Rank {0} is out of range'.format(rank))
    
    def compute_single(self, rank):
        """
        Extract torsion angles from the L{ClusterRep} at residue C{#rank}.
        
        @param rank: target residue rank
        @type rank: int
        
        @rtype: L{TorsionPredictionInfo} 
        """
        
        residue = self._residue(rank)
        rep = residue.filter(threshold=self.threshold, extend=self.extend)
        
        if rep is None:
            return None
        
        else:
            fragment = rep.centroid
            torsion = fragment.torsion_at(rank, rank)[0]
            ss = fragment.sec_structure_at(rank, rank)[0] 
            
            return TorsionPredictionInfo(rank, rep.confidence, torsion, ss, primary=True)    
            
    def compute(self, rank):
        """
        Extract torsion angles from all L{ClusterRep}s, covering residue C{#rank}.
        
        @param rank: target residue rank
        @type rank: int
        
        @return: L{TorsionPredictionInfo} instances, sorted by confidence  
        @rtype: tuple of L{TorsionPredictionInfo}  
        """        
        
        if not self._initialized:
            self.init()

        prediction = []
        
        for rep in self._reps.values():
            
            if rep.centroid.qstart <= rank <= rep.centroid.qend:
                
                fragment = rep.centroid
                torsion = fragment.torsion_at(rank, rank)[0]
                ss = fragment.sec_structure_at(rank, rank)[0] 
                info = TorsionPredictionInfo(rank, rep.confidence, torsion, ss)

                if rep is self._reps.get(rank, None):
                    info.primary = True
                    
                prediction.append(info)
        
        prediction.sort(reverse=True)
        return tuple(prediction)
    
    def flat_torsion_map(self):
        """
        Filter the current fragment map and create a new, completely flat,
        non-overlapping map built from centroids, assigned iteratively by
        decreasing confidence. Centroids with lower confidence which overlap
        with previously assigned centroids will be trimmed to fill existing
        gaps only. 
        
        @return: L{TorsionPredictionInfo} instances, one for each target residue
        @rtype: tuple of L{TorsionPredictionInfo}            
        """
        
        if not self._initialized:
            self.init()        
        
        prediction = []
        slots = set(range(1, self.target.length + 1))
        
        reps = list(self._reps.values())
        reps.sort(key=lambda i: i.confidence, reverse=True)
        
        for rep in reps:
            
            for rank in range(rep.centroid.qstart, rep.centroid.qend + 1):
                if rank in slots:
                    torsion = rep.centroid.torsion_at(rank, rank)[0]
                    ss = rep.centroid.sec_structure_at(rank, rank)[0] 
                    info = TorsionPredictionInfo(rank, rep.confidence, torsion, ss, primary=True)
                    
                    prediction.append(info)
                    slots.remove(rank)
                    
        for rank in slots:
            prediction.append(TorsionPredictionInfo(rank, 0, None))

        prediction.sort(key=lambda i: i.rank)                    
        return tuple(prediction)
    
    def get_angles(self, rank):
        """
        Extract all torsion angles coming from all fragments, which had survived
        the filtering and cover residue C{#rank}. 

        @param rank: target residue rank
        @type rank: int
        
        @return: all L{TorsionAngles} for a cluster at the specified residue  
        @rtype: tuple of L{TorsionAngles}
        """  
                
        if not self._initialized:
            self.init()
        if rank not in self._clusters:
            return tuple()

        angles = []
                
        for node in self._clusters[rank]:
            fragment = node.fragment
            torsion = fragment.torsion_at(rank, rank)[0]
            angles.append(torsion)

        return tuple(angles)
         

class TorsionPredictionInfo(object):
    """
    Struct container for a single torsion angle prediction.
    
    @param rank: target residue rank
    @type rank: int
    @param confidence: confidence of prediction
    @type confidence: float
    @param torsion: assigned phi/psi/omega angles
    @type torsion: L{TorsionAngles}
    @param dssp: assigned secondary structure
    @type dssp: L{SecondaryStructureElement}
    @param primary: if True, designates that the assigned angles are extracted
                    from the L{ClusterRep} at residue C{#rank}; otherwise: the
                    angles are coming from another, overlapping L{ClusterRep}
    
    """
    
    def __init__(self, rank, confidence, torsion, dssp, primary=False):
        
        self.rank = rank
        self.confidence = confidence
        self.torsion = torsion
        self.primary = primary
        self.dssp = dssp
            
    def as_tuple(self):
        """
        @return: convert this prediction to a tuple: (confidence, phi, psi, omega)
        @rtype: tuple
        """        
        return tuple([self.confidence, self.torsion.phi, self.torsion.psi, self.torsion.omega])
    
    def __str__(self):
        return '<TorsionPredictionInfo: {0.confidence:6.3f} at #{0.rank}>'.format(self)
    
    def __lt__(self, other):
        return self.confidence < other.confidence


class AssignmentFactory(object):
    
    def target(self, *a, **k):
        return Target(*a, **k)
    
    def residue(self, *a, **k):
        return TargetResidue(*a, **k)
    
    def assignment(self, *a, **k):
        return Assignment(*a, **k)
    
class ChemShiftAssignmentFactory(object):
    
    def target(self, *a, **k):
        return ChemShiftTarget(*a, **k)
    
    def residue(self, *a, **k):
        return ChemShiftTargetResidue(*a, **k)
    
    def assignment(self, *a, **k):
        return ChemShiftAssignment(*a, **k)    
            
class Target(csb.core.AbstractNIContainer):
    """
    Represents a protein structure prediction target.
    
    @param id: target sequence ID, in PDB accnC format
    @type id: str
    @param length: total target sequence length
    @type length: int
    @param residues: a list, containing target's residues. See also
                     L{Target.from_sequence}
    @type residues: iterable of L{csb.bio.structure.ProteinResidue}s
    """
    
    def __init__(self, id, length, residues, overlap=None, factory=AssignmentFactory()):
    
        self._id = id
        self._accession = id[:-1]
        self._chain_id = id[-1]
        self._length = length
        self._overlap = overlap
        self._factory = factory
        
        self._assignments = csb.core.ReadOnlyCollectionContainer(type=Assignment)
        self._errors = csb.core.CollectionContainer()
            
        resi = [factory.residue(native) for native in residues]
        self._residues = csb.core.ReadOnlyCollectionContainer(items=resi,
                                            type=TargetResidue, start_index=1)
        
    @staticmethod
    def from_sequence(id, sequence):
        """
        Factory, which builds L{Target} objects from a bare sequence.
        
        @param sequence: target's sequence
        @type sequence: L{csb.bio.sequence.AbstractSequence}, str or iterable
        
        @rtype: L{Target}
        """
        
        if isinstance(sequence, csb.bio.sequence.Sequence):
            sequence = sequence.sequence
        
        residues = []
        
        for rn, aa in enumerate(sequence, start=1):
            residue = csb.bio.structure.ProteinResidue(rank=rn, type=aa)
            residues.append(residue)
            
        return Target(id, len(residues), residues)
    
    @staticmethod
    def from_profile(hmm):
        """
        Factory, which builds L{Target} objects from an HMM profile.
        
        @param hmm: target's HMM
        @type hmm: L{csb.bio.hmm.ProfileHMM}
        
        @rtype: L{Target}
        """
                
        residues = [ r.clone() for r in hmm.residues ]
        return Target(hmm.id, hmm.layers.length, residues)
    
    @staticmethod
    def deserialize(pickle):
        
        with open(pickle) as stream:
            return csb.io.Pickle.load(stream)
    
    @property
    def _children(self):
        return self._residues       
    
    @property
    def errors(self):
        return self._errors 
    
    @property
    def id(self):
        return self._id
    
    @property
    def accession(self):
        return self._accession
    
    @property
    def chain_id(self):
        return self._chain_id
    
    @property
    def max_overlap(self):
        return self._overlap
    
    @property
    def length(self):
        return self._length
    
    @property
    def sequence(self):
        return ''.join(str(r.native.type) for r in self)
    
    @property
    def matches(self):
        return self._assignments
    
    @property
    def residues(self):
        return self._residues
        
    def assign(self, fragment):
        """
        Add a new fragment match.
        @param fragment: fragment to assign
        @type fragment: L{Assignment}
        """

        if not 1 <= fragment.qstart <= fragment.qend <= len(self._residues):
            raise ValueError("Fragment out of range")
        
        self._assignments._append_item(fragment)
                    
        for rank in range(fragment.qstart, fragment.qend + 1):
            ai = ResidueAssignmentInfo(fragment, rank)
            self._residues[rank].assign(ai)
            
    def assignall(self, fragments):
        """
        Assign a bunch of fragments at once.
        @type fragments: iterable of L{Assignment}s
        """
        for frag in fragments:
            self.assign(frag)
            
    def filter(self, threshold=1.5, extend=False):
        """
        Filter the current fragment map using a L{FragmentCluster}.
        
        @param threshold: cluster RMSD threshold (see L{FragmentCluster})
        @type threshold: float
        @param extend: pick extended alternatives where possible (default=False)
        @type extend: bool
        
        @return: a new target, containing only cluster centroids/reps
        @rtype: L{Target}
        """
        
        target = self.clone()
        
        for residue in self.residues:
            rep = residue.filter(threshold=threshold, extend=extend)
            
            if rep is not None:
                target.assign(rep.centroid)
                
        return target
    
    def clone(self):
        """
        @return: a deep copy of the target
        @rtype: L{Target}
        """
        residues = [r.native for r in self.residues]
        target = self._factory.target(self.id, self.length, residues,
                                      overlap=self._overlap)
        return target        

class ChemShiftTarget(Target):

    def __init__(self, id, length, residues, overlap=None):
        
        super(ChemShiftTarget, self).__init__(id, length, residues, overlap=overlap,
                                              factory=ChemShiftAssignmentFactory())
            
    def assign(self, fragment):

        if not 1 <= fragment.qstart <= fragment.qend <= len(self._residues):
            raise ValueError("Fragment out of range")
        
        self._assignments._append_item(fragment)
        
        rank = fragment.qstart
        ai = ResidueAssignmentInfo(fragment, rank)
        self._residues[rank].assign(ai)
        
    def clone(self):
        return self._factory.target(self.id, self.length, 
                                    [r.native for r in self.residues],
                                    overlap=self._overlap)         
    
class TargetResidue(object):
    """
    Wrapper around L{Target}'s native residues. Decorates them with additional,
    fragment-related methods.
    
    @type native_residue: L{csb.bio.structure.ProteinResidue} 
    """
    
    def __init__(self, native_residue):
        
        self._type = native_residue.type
        self._native = native_residue.clone()
        self._assignments = csb.core.ReadOnlyCollectionContainer(type=ResidueAssignmentInfo)

    @property
    def type(self):
        return self._type
            
    @property
    def native(self):
        return self._native
    
    @property
    def assignments(self):
        return self._assignments
    
    def assign(self, assignment_info):
        self._assignments._append_item(assignment_info)
                
    def filter(self, method=Metrics.RMSD, threshold=1.5, extend=False):
        """
        Filter all fragments, covering this position in the L{Target} using a 
        L{FragmentCluster}.
        
        @param method: one of the L{Metrics} members (default=L{Metrics.RMSD})
        @type method: str
        @param threshold: cluster RMSD threshold (see L{FragmentCluster})
        @type threshold: float
        @param extend: pick extended alternative where possible (default=False)
        @type extend: bool
                
        @return: cluster's representative (if converged) or None
        @rtype: L{ClusterRep} or None
        """
        
        try:
            nodes = []
            for ai in self.assignments:
                node = ClusterNode.create(ai.fragment, method, extend)
                nodes.append(node)
                
            cluster = FragmentCluster(nodes, threshold=threshold)
            
            center = cluster.shrink(minitems=0)
            if center.has_alternative:
                center.exchange()
                
            return center
        
        except (ClusterExhaustedError, ClusterDivergingError):
            return None
        
    def closest(self):
        """
        @return: the fragment with the lowest RMSD at this position in the L{Target}
        @rtype: L{Assignment}
        """
        
        best = None
        
        for ai in self.assignments:
            a = ai.fragment
            if a.length < FragmentCluster.MIN_LENGTH:
                continue
            if best is None or a.rmsd < best.rmsd:
                best = a
            elif a.rmsd == best.rmsd and a.length > best.length:
                best = a
        
        return best        
    
    def longest(self):
        """
        @return: the longest fragment, covering the current position
        @rtype: L{Assignment}
        """
        best = None        
        
        for q in self.assignments:
            if best is None or (q.fragment.length > best.length):
                best = q.fragment
                
        return best
    
    def precision(self, threshold=1.5):
        """
        @return: the residue-wise precision of the fragment library at the
                 current position (percentage).
                 
        @param threshold: true-positive RMSD cutoff (default=1.5)
        @type threshold: float                                  
        @rtype: float 
        """
        
        if self.assignments.length < 1:
            return None
        else:
            positive = [a for a in self.assignments if a.fragment.rmsd <= threshold]
            pos = len(positive) * 100.0 / self.assignments.length
            
            return pos
        
class ChemShiftTargetResidue(TargetResidue):

    def closest(self):
        
        best = None
        
        for ai in self.assignments:
            a = ai.fragment
        
            if a.score < ChemShiftAssignment.BIT_SCORE_THRESHOLD * a.window:
                continue
            
            if best is None or a.score > best.score:
                best = a
            elif a.score == best.score and a.length > best.length:
                best = a
        
        return best        

            
class ResidueAssignmentInfo(object):
    
    def __init__(self, assignment, rank):
        
        if not assignment.qstart <= rank <= assignment.qend:
            raise ValueError('Rank {0} is not matched by this assignment')
        
        self._assignment = assignment
        self._rank = rank
        self._relrank = rank - assignment.qstart 
    
    @property
    def c_alpha(self):
        return self._assignment.backbone[self._relrank]
    
    @property
    def fragment(self):
        return self._assignment    

class Assignment(FragmentMatch):
    """
    Represents a match between a fragment and its target.
    
    @param source: source structure (must have torsion angles precomputed)
    @type source: L{csb.bio.structure.Chain}
    @param start: start position in C{source} (rank)
    @type start: int
    @param end: end position in C{source} (rank)
    @type end: int
    @param id: fragment ID
    @type id: str
    @param qstart: start position in target (rank)
    @type qstart: int
    @param qend: end position in target (rank)
    @type qend: int
    @param probability: probability of assignment
    @type probability: float
    @param rmsd: RMSD of the fragment, compared to target's native structure
    @type rmsd: float
    """
    
    def __init__(self, source, start, end, qstart, qend, id=None, probability=None, rmsd=None,
                 tm_score=None, score=None, neff=None, internal_id=None):

        assert source.has_torsion
        sub = source.subregion(start, end, clone=True)
        try:
            calpha = [r.atoms['CA'].vector.copy() for r in sub.residues]
        except csb.core.ItemNotFoundError:
            raise csb.bio.structure.Broken3DStructureError()
        torsion = [r.torsion.copy() for r in sub.residues]
                    
        self._calpha = csb.core.ReadOnlyCollectionContainer(items=calpha, type=numpy.ndarray)
        self._torsion = torsion
        self._sequence = sub.sequence
        
        self._source_id = source.accession[:4] + source.id 
        self._start = start
        self._end = end

        self._score = score
        self._neff = neff
        self._ss = None 
    
        self.internal_id = internal_id
        
        if id is None:
            id = "{0}:{1}-{2}".format(self.source_id, self.start, self.end)
        
        super(Assignment, self).__init__(id, qstart, qend, probability, rmsd, tm_score, None)
        
        self._ss = SecondaryStructure('-' * self.length)
        
    @staticmethod
    def from_fragment(fragment, provider):
        """
        Create a new L{Assignment} given a source rosetta fragment.
        
        @param fragment: rosetta fragment
        @type fragment: L{RosettaFragment}
        @param provider: PDB database provider
        @type provider: L{StructureProvider} 
        
        @rtype: L{Assignment}
        """
        try:
            structure = provider.get(fragment.accession)
        except KeyError:
            structure = provider.get(fragment.source_id)
        source = structure.chains[fragment.chain]
        source.compute_torsion()
        
        id = "{0}:{1}-{2}".format(fragment.source_id, fragment.start, fragment.end)
        
        return Assignment(source, fragment.start, fragment.end,
                          fragment.qstart, fragment.qend, id, 0, 0)        

    @property
    def backbone(self):
        return self._calpha
    
    @property
    def sequence(self):
        return self._sequence

    @property
    def torsion(self):
        return self._torsion
            
    @property
    def source_id(self):
        return self._source_id
        
    @property
    def start(self):
        return self._start

    @property
    def end(self):
        return self._end

    @property
    def score(self):
        return self._score

    @property
    def neff(self):
        return self._neff    
    
    @property
    def secondary_structure(self):
        return self._ss
    @secondary_structure.setter
    def secondary_structure(self, value):
        
        if isinstance(value, csb.core.string):
            value = csb.bio.structure.SecondaryStructure(value)
        if len(str(value)) != self.length:#(value.end - value.start + 1) != self.length:
            raise ValueError("Invalid secondary structure length", len(str(value)), self.length )
          
        self._ss = value
    
    def transform(self, rotation, translation):
        """
        Apply rotation/translation to fragment's coordinates in place
        """
        
        for ca in self.backbone:
            newca = numpy.dot(ca, numpy.transpose(rotation)) + translation
            for i in range(3):
                ca[i] = newca[i]

    def _check_range(self, qstart, qend):

        if not (self.qstart <= qstart <= qend <= self.qend):
            raise ValueError('Region {0}..{1} is out of range {2.qstart}..{2.qend}'.format(qstart, qend, self))
        
    def anchored_around(self, rank):
        """
        @return: True if the fragment is centered around position=C{rank}
        @rtype: bool
        """
        
        if self.qstart < rank < self.qend:
            if (rank - self.qstart + 1) > 0.4 * (self.qend - self.qstart + 1):
                return True
        
        return False
                                
    def backbone_at(self, qstart, qend):
        """
        @return: the CA coordinates of the fragment at the specified subregion.
        @rtype: list
        """
        
        self._check_range(qstart, qend)
        
        relstart = qstart - self.qstart
        relend = qend - self.qstart + 1
        
        return self.backbone[relstart : relend]
    
    def torsion_at(self, qstart, qend):
        """
        @return: torsion angles of the fragment at the specified subregion
        @rtype: list
        """
        self._check_range(qstart, qend)
        
        relstart = qstart - self.qstart
        relend = qend - self.qstart + 1
        
        return self.torsion[relstart : relend]    
    
    def sec_structure_at(self, qstart, qend):
        """
        @return: secondary structure of the fragment at the specified subregion
        @rtype: list
        """
                        
        self._check_range(qstart, qend)
        start = qstart - self.qstart + 1
        end = qend - self.qstart + 1
        
        return self.secondary_structure.scan(start, end, loose=True, cut=True)      
            
    def overlap(self, other):
        """
        @type other: L{Assignment} 
        @return: target positions, covered by both C{self} and C{other}
        @rtype: set of int
        """

        qranks = set(range(self.qstart, self.qend + 1))
        sranks = set(range(other.qstart, other.qend + 1))
        
        return qranks.intersection(sranks)
            
    def rmsd_to(self, other, min_overlap=5):
        """
        @return: the CA RMSD between C{self} and C{other}.
        
        @param other: another fragment
        @type other: L{Assignment}
        @param min_overlap: require at least that number of overlapping residues
                            (return None if not satisfied)
        @type min_overlap: int
        
        @rtype: float
        """
        if self is other:
            return 0

        common = self.overlap(other)
        
        if len(common) >= min_overlap:
        
            qstart, qend = min(common), max(common)
            
            q = self.backbone_at(qstart, qend)
            s = other.backbone_at(qstart, qend)
            
            if len(q) > 0 and len(s) > 0:
                return csb.bio.utils.rmsd(numpy.array(q), numpy.array(s))
            
        return None
    
    def nrmsd_to(self, other, min_overlap=5):
        """
        @return: the normalized CA RMSD between C{self} and C{other}.
        
        @param other: another fragment
        @type other: L{Assignment}
        @param min_overlap: require at least that number of overlapping residues
                            (return None if not satisfied)
        @type min_overlap: int
        
        @rtype: float
        """        
        
        common = self.overlap(other)
        
        if len(common) >= min_overlap:
        
            qstart, qend = min(common), max(common)
            
            q = self.backbone_at(qstart, qend)
            s = other.backbone_at(qstart, qend)
            
            if len(q) > 0 and len(s) > 0:
                return csb.bio.utils.rmsd(q, s) / RANDOM_RMSD[ len(common) ]
            
        return None
    
    def mda_to(self, other, min_overlap=5):
        """
        @return: the MDA (maximum deviation in torsion angles) between 
        C{self} and C{other}.
        
        @param other: another fragment
        @type other: L{Assignment}
        @param min_overlap: require at least that number of overlapping residues
                            (return None if not satisfied)
        @type min_overlap: int
        
        @rtype: float
        """
        common = self.overlap(other)
        
        if len(common) >= min_overlap:
        
            qstart, qend = min(common), max(common)
            
            q = self.torsion_at(qstart, qend)
            s = other.torsion_at(qstart, qend)
            
            if len(q) > 0 and len(s) > 0:
                
                maxphi = max(numpy.abs(i.phi - j.phi) for i, j in zip(q, s)[1:])   # phi: 2 .. L
                maxpsi = max(numpy.abs(i.psi - j.psi) for i, j in zip(q, s)[:-1])  # psi: 1 .. L-1
                
                return max(maxphi, maxpsi)
            
        return None  
 
    
class ChemShiftAssignment(Assignment):
    
    BIT_SCORE_THRESHOLD = 1.1
    
    def __init__(self, source, start, end, qstart, qend, window, score, rmsd):
                    
        self._window = window
        
        super(ChemShiftAssignment, self).__init__(
                            source, start, end, qstart, qend, id=None, probability=1.0,
                            rmsd=rmsd, tm_score=None, score=score, neff=None, internal_id=None)

    @property
    def window(self):
        return self._window       

class ClusterExhaustedError(ValueError):
    pass    

class ClusterEmptyError(ClusterExhaustedError):
    pass

class ClusterDivergingError(RuntimeError):
    pass
    
class FragmentCluster(object):
    """
    Provides clustering/filtering of the fragments, covering a common residue
    in the target. Clustering is done via iterative shrinking of the cluster.
    At each iteration, node rejection (deletion) is attempted for each node. The
    node rejection, causing the most significant drop in the average pairwise
    distance (RMSD) in the cluster, is retained. This procedure is repeated
    until: 1) the average pairwise RMSD drops below the C{threshold} (converged),
    2) the cluster gets exhausted or 3) node rejection no longer
    causes a drop in the average distance (not converging).
    
    @param items: cluster members
    @type items: iterable of L{ClusterNode}s
    @param threshold: RMSD threshold; continue shrinking until the mean distance
                      drops below this value (default=1.5) 
    @type threshold: float
    @param connectedness: when calculating centroids, consider only nodes 
                          connected to at least c% of all surviving vertices 
                          (default=0.5)
    @type connectedness: float
    """
    
    MIN_LENGTH = 6

    def __init__(self, items, threshold=1.5, connectedness=0.5):

        items = set(i for i in items if i.fragment.length >= FragmentCluster.MIN_LENGTH)
        
        self._matrix = {}        
        self._threshold = float(threshold)
        self._connectedness = float(connectedness)
        self._weight = 0
        self._edges = 0
        
        visited = set()
                       
        for i in items:
            self._matrix.setdefault(i, {})
            
            for j in items:
                self._matrix.setdefault(j, {})
                
                if (j, i) not in visited:
                    visited.add((i, j))
                    distance = i.distance(j)
                    
                    if distance is not None:                  
                        self._matrix[i][j] = distance
                        self._matrix[j][i] = distance
                        i.weight += distance
                        j.weight += distance
                        
                        self._weight += distance  
                        self._edges += 1                      
                                                        
        self._items = set(self._matrix.keys())
                     
        if len(self._items) < 1:
            raise ClusterEmptyError() 
        
        self._initcount = self.count 
               
    @property
    def count(self):
        return len(self._items)

    @property    
    def items(self):
        return tuple(self._items)
        
    @property    
    def fragments(self):
        return tuple(i.fragment for i in self._items)
    
    @property
    def threshold(self):
        return self._threshold
    @threshold.setter
    def threshold(self, value):
        self._threshold = float(value)
    
    @property
    def connectedness(self):
        return self._connectedness
    
    def _distances(self, skip=None):

        d = []
        
        for i in self._matrix:
            if skip is i:
                continue

            for j in self._matrix[i]:
                if skip is not j:
                    d.append(self._matrix[i][j])
                    
        return d
    
    def _distance(self, i, j):
        
        if j in self._matrix[i]:
            return self._matrix[i][j]
        else:
            return None

    def mean(self, skip=None):
        """
        @return: the current mean distance in the cluster
        @rtype: float
        """
        if self._edges == 0:
            raise ClusterExhaustedError()
            
        if not skip:
            return float(self._weight) / self._edges
        
        else:
            weight = self._weight - skip.weight
            edges = self._edges - len(self._matrix[skip])
            
            if edges < 1:
                return 0
            else:  
                return float(weight) / edges
        
    def centroid(self):
        """
        @return: the current representative fragment
        @rtype: L{ClusterRep}
        
        @note: the cluster rep is the node with the lowest average distance
               to all other nodes. If a fixed fragment exists, structurally similar
               to the rep, but longer, this fragment may be suggested as an alternative
               (see also L{ClusterRep}).
        """

        alt = None
        cen = None
        avg = None

        for i in self._matrix:
            edges = len(self._matrix[i]) or (1.0 / self.count)
            curravg = float(i.weight) / edges
            conn = len(self._matrix[i]) / float(self.count)
            
            if avg is None or (curravg < avg and conn >= self.connectedness):
                avg = curravg
                cen = i
            elif curravg == avg:
                if i.fragment.length > cen.fragment.length:
                    cen = i
    
        d = self._distances()
        mean = numpy.mean(d) 
        cons = sum(1.0 for i in d if i <= self.threshold) / len(d)
        
        for i in self._matrix:
            if i is not cen and i.fixed and i.fragment.length > cen.fragment.length:
                distance = self._distance(i, cen)
                if distance is not None and distance < 0.5 * self.threshold:
                    if alt is None or alt.fragment.length < i.fragment.length:
                        alt = i

        return ClusterRep(cen, mean, cons, len(self._matrix[cen]), alternative=alt,
                            rejections=(self._initcount - self.count))

    def reject(self, item):
        """
        Remove C{item} from the cluster.
        
        @type item: L{ClusterNode}
        @raise ClusterExhaustedError: if this is the last remaining item
        """
        if self.count == 1:
            raise ClusterExhaustedError()
        
        assert not item.fixed
        
        for i in self._matrix:
            if item in self._matrix[i]:                
                distance = self._matrix[i][item]    
                self._weight -= distance
                i.weight -= distance
                
                del self._matrix[i][item]
                self._edges -= 1                
        
        del self._matrix[item]
        self._items.remove(item)

    def shrinkone(self):
        """
        Shrink the cluster by a single node.
        
        @return: True on successful shrink, False otherwise (e.g. if
                 already converged)
        @rtype: bool
        @raise ClusterExhaustedError: if exhausted
        @raise ClusterDivergingError: if not converging
        """
        
        mean = self.mean()
        if mean <= self.threshold or self.count == 1:
            return False                  # already shrunk enough

        m = {}
        
        for i in self._matrix:
            if not i.fixed:
                newmean = self.mean(skip=i)
                m[newmean] = i

        if len(m) == 0:                   # only fixed items remaining
            raise ClusterExhaustedError()

        newmean = min(m)

        if newmean > mean:
            raise ClusterDivergingError() # can't converge, usually when fixed items are too far away from the average         
        elif newmean < mean:            
            junk = m[newmean]
            self.reject(junk)
            return True                   # successful shrink
        else:
            return False                  # converged
        
    def shrink(self, minitems=2):
        """
        Start automatic shrinking.
        
        @param minitems: absolute minimum of the number of nodes in the cluster
        @type minitems: int

        @return: cluster's representative: the node with the lowest average
                 distance to all other nodes in the cluster
        @rtype: L{ClusterRep}
        
        @raise ClusterExhaustedError: if C{self.count} < C{minitems} and
                                      still not converged
        """

        if self.count > minitems:

            while self.shrinkone():
                if self.count <= minitems:
                    raise ClusterExhaustedError()
        else:
            raise ClusterExhaustedError()
            
        return self.centroid()
    
class ClusterNode(object):
    """
    Cluster node.
    
    @param fragment: fragment 
    @type fragment: L{Assignment}
    @param distance: distance metric (a L{Metrics} member, default is RMSD)
    @type distance: str
    @param fixed: mark this node as fixed (cannot be rejected)
    @type fixed: bool    
    """
    
    FIXED = 0.7
    
    @staticmethod
    def create(fragment, method=Metrics.RMSD, extend=False):
        """
        Create a new L{ClusterNode} given a specified C{Assignment}. If this
        assignment is a high probability match, define it as a fixed fragment.
        
        @rtype: L{ClusterNode}
        """
        if fragment.probability > ClusterNode.FIXED and fragment.length >= FragmentCluster.MIN_LENGTH:
            return ClusterNode(fragment, distance=method, fixed=extend)
        else:
            return ClusterNode(fragment, distance=method, fixed=False)        
        
    def __init__(self, fragment, distance=Metrics.RMSD, fixed=False):
        
        if fixed and fragment.length < FragmentCluster.MIN_LENGTH:
            raise ValueError("Can't fix a short fragment")
        
        self.fragment = fragment
        self.fixed = bool(fixed)
        self.weight = 0
                
        self._distance = getattr(self.fragment, distance)
        
    def distance(self, other):
        """
        @return: the distance between self and another node
        @type other: L{ClusterNode}
        @rtype: float
        """
        return self._distance(other.fragment)
    
class ClusterRep(object):
    """
    Cluster's representative (centroid) node. This object carries the
    result of shrinking itself.
    
    @param centroid: rep node
    @type centroid: L{ClusterNode}
    @param mean: current mean distance in the cluster
    @type mean: float
    @param consistency: percentage of pairwise distances below the RMSD C{threshold}
    @type consistency: float
    @param count: current number of nodes in the cluster
    @type count: int
    @param rejections: total number of rejections
    @type rejections: int
    @param alternative: suggested cluster rep alternative (e.g. structurally
                        similar to the centroid, but longer)
    @type param:  
    """
    
    def __init__(self, centroid, mean, consistency, count, rejections=0, alternative=None):
        
        if isinstance(centroid, ClusterNode):
            centroid = centroid.fragment
        if isinstance(alternative, ClusterNode):
            alternative = alternative.fragment
                    
        self._centroid = centroid
        self._alternative = alternative
        self._mean = mean
        self._consistency = consistency
        self._count = count
        self._rejections = rejections
    
    @property
    def confidence(self):
        """
        Confidence of assignment: log10(count) * consistency
        """
        if self.count <= 0 or self.count is None or self.consistency is None:
            return 0
        else:
            return numpy.log10(self.count) * self.consistency
        
    @property
    def centroid(self):
        return self._centroid
    
    @property
    def alternative(self):
        return self._alternative
    
    @property    
    def has_alternative(self):
        return self._alternative is not None        
    
    @property
    def mean(self):
        return self._mean
    
    @property
    def consistency(self):
        return self._consistency
    
    @property
    def count(self):
        return self._count
    
    @property
    def rejections(self):
        return self._rejections
    
    def exchange(self):
        """
        If an alternative is available, swap the centroid and the alternative. 
        """
        
        if self._alternative is not None:

            centroid = self._centroid
            self._centroid = self._alternative
            self._alternative = centroid
    

class ResidueEventInfo(object):
    
    def __init__(self, residue, confidence=0, count=0, confident=True, gap=False, rep=None):
        
        self.residue = residue
        self.confidence = confidence
        self.confident = confident
        self.gap = gap
        self.count = count
        self.rep = rep
        
    @property
    def rank(self):
        return self.residue.rank
    
    @property
    def type(self):
        return self.residue.type
        
    @property
    def torsion(self):
        if self.rep:
            return self.rep.torsion_at(self.rank, self.rank)[0]
        else:
            return None
        
            
class RosettaFragsetFactory(object):
    """
    Simplifies the construction of fragment libraries.
    """
    
    def __init__(self):
        import csb.bio.fragments.rosetta as rosetta
        self.rosetta = rosetta
    
    def make_fragset(self, target):
        """
        Build a fragment library given a L{Target} and its L{Assignment}s.
        
        @param target: target protein
        @type target: L{Target}
        
        @rtype: L{RosettaFragmentMap}
        """
        
        frag_factory = self.rosetta.RosettaFragment
        fragments = list(map(frag_factory.from_object, target.matches))
        #fragments = [ frag_factory.from_object(f) for f in target.matches if f.length >= 6 ]
        fragments.sort()
                
        return self.rosetta.RosettaFragmentMap(fragments, target.length) 
    
    def make_chopped(self, fragments, window):
        """
        Build a fixed-length fragment library from a list of
        variable-length L{Assignment}s.
        
        @param fragments: source fragments
        @type fragments: iterable of L{RosettaFragment}s
        @param window: fixed-length fragment size (for classic Rosetta: choose 9)
        @type window: int

        @return: fixed-length fragment library        
        @rtype: L{RosettaFragmentMap}
        """
                
        frags = []
        
        for f in fragments:
            for qs in range(f.qstart, f.qend - window + 1):
                frags.append(f.subregion(qs, qs + window - 1))
        
        return self.rosetta.RosettaFragmentMap(frags)
    
    def make_combined(self, target, filling, threshold=0.5, callback=None):
        """
        Complement C{target}'s assignments with C{filling} (e.g. rosetta fragments).
        The regions to be complemented are determined by calculating the confidence
        at each residue (by filtering). 
        
        
        @param target: target protein
        @type target: L{Target}
        @param filling: additional fragments to place in the low-conf regions
        @type filling: L{RosettaFragmentMap} or iterable of L{RosettaFragment}
        @param threshold: confidence threshold
        @type threshold: float
        
        @return: complemented fragment library
        @rtype: L{RosettaFragmentMap}        
        """
        
        fragmap = self.make_fragset(target)
        covered = set()
        
        for r in target.residues:
            
            if r.assignments.length == 0:
                if callback:
                    callback(ResidueEventInfo(r.native, gap=True))
                continue
            
            cluster = r.filter()
            if cluster is None:
                if callback:
                    callback(ResidueEventInfo(r.native, 0, 0, confident=False))                
                continue

            if cluster.confidence >= threshold:
                covered.add(r.native.rank)
                confident = True
            else:
                confident = False
                
            if callback:
                callback(ResidueEventInfo(r.native, cluster.confidence, cluster.count, confident))
                
        for r in target.residues:
            if r.native.rank not in covered:               # true for gaps and low-conf residues
                fragmap.mark_unconfident(r.native.rank)
                
        for frag in filling:
            fragmap.complement(frag)
            
        return fragmap
    
    def make_filtered(self, target, extend=False, callback=None):
        """
        Builed a filtered fragment library (by clustering), containing only 
        representative fragments (cluster centroids).
        
        @param target: target protein
        @type target: L{Target}
        @param extend: if True, pick alternative reps if available
        @type extend: bool

        @return: filtered fragment library        
        @rtype: L{RosettaFragmentMap}        
        """
                
        fragments = []
        
        for r in target.residues:
            if r.assignments.length == 0:
                if callback:
                    callback(ResidueEventInfo(r.native, gap=True))
                continue
            
            cluster = r.filter(extend=extend)
            if cluster is None:
                if callback:
                    callback(ResidueEventInfo(r.native, 0, 0, confident=False))
                continue
            
            if extend and cluster.has_alternative:
                best = cluster.alternative
            else:
                best = cluster.centroid
                
            fragment = self.rosetta.RosettaFragment.from_object(best)
            fragments.append(fragment)
            if callback:
                callback(ResidueEventInfo(r.native, cluster.confidence, cluster.count, rep=cluster.centroid))
        
        fragments.sort()
        return self.rosetta.RosettaFragmentMap(fragments, target.length)
    
    def mix(self, *fragsets):
        """
        Mix fragments from multiple libraries.
        
        @type fragsets: L{RosettaFragmentMap}
        @return: mixed fragment library        
        @rtype: L{RosettaFragmentMap}        
        """
                
        fragments = []
        length = 0
        
        for fragset in fragsets:
            if fragset._length > length:
                length = fragset._length  
            
            for fragment in fragset:
                fragments.append(fragment)
                
        return self.rosetta.RosettaFragmentMap(fragments, length)        
                    
            
class BenchmarkAdapter(object):
    
    class Connection(object):
    
        FACTORY = None
        DSN = None
        
        def __init__(self, factory=None, dsn=None):
    
            self.factory = factory or self.__class__.FACTORY
            self.cs = dsn or self.__class__.DSN
            self.connection = None
            self.cursor = None
    
        def __enter__(self):
    
            self.connection = self.factory(self.cs)
            try:
                self.cursor = self.connection.cursor()
            except:
                self.connection.close()
                raise 
            return self
    
        def __exit__(self, *args):
            try:
                if not self.cursor.closed:
                    self.cursor.close()
            finally:
                if not self.connection.closed:
                    self.connection.close()

    def __init__(self, pdb_paths, connection_string=None, factory=AssignmentFactory()):
                
        self._connection = None
        
        self._parser = StructureParser
        self._pdb = FileSystemStructureProvider(pdb_paths)
        self._factory = factory
    
        try:    
            import psycopg2.extras
        except ImportError:
            raise RuntimeError('Please install the psycopg2 module first')
        
        if connection_string is None:
            connection_string = self.connection_string()
            
        BenchmarkAdapter.Connection.FACTORY = psycopg2.extras.DictConnection
        BenchmarkAdapter.Connection.DSN = connection_string
        
    @staticmethod
    def connection_string(database='FragmentBenchmarks', host='', username='', password=''):

        fields = ['dbname={0}'.format(database)]
        
        if host:
            fields.append('host={0}'.format(host))
        if username:
            fields.append('user={0}'.format(username))
            fields.append('password={0}'.format(password))

        return ' '.join(fields)
        
    def targets(self, benchmark_id):
            
        with BenchmarkAdapter.Connection() as db:
            
            db.cursor.callproc('reporting."GetTargets"', (benchmark_id,))
            return db.cursor.fetchall()            
            
    def target_details(self, target_id):
        
        with BenchmarkAdapter.Connection() as db:
            
            db.cursor.callproc('reporting."GetTargetDetails"', (target_id,))
            return db.cursor.fetchall()            
            
    def assignments(self, target_id, type):
        
        with BenchmarkAdapter.Connection() as db:
            
            db.cursor.callproc('reporting."GetAssignments"', (target_id, type))
            return db.cursor.fetchall()
        
    def assignments_sec_structure(self, target_id, type):
        
        with BenchmarkAdapter.Connection() as db:
            
            db.cursor.callproc('reporting."GetTargetSecStructureAssignments2"', (target_id, type))
            return db.cursor.fetchall()        

    def scores(self, benchmark_id, type):
        
        with BenchmarkAdapter.Connection() as db:
            
            db.cursor.callproc('reporting."GetScores"', (benchmark_id, type))
            return db.cursor.fetchall()    

    def centroids(self, benchmark_id):
        
        with BenchmarkAdapter.Connection() as db:
            
            db.cursor.callproc('reporting."GetCentroids"', (benchmark_id,))
            return db.cursor.fetchall() 
            
    def structure(self, accession, chain=None):

        pdbfile = self._pdb.find(accession)
        
        if not pdbfile and chain:
            pdbfile = self._pdb.find(accession + chain)
                    
        if not pdbfile:
            raise IOError('{0} not found here: {1}'.format(accession, self._pdb))
        
        return self._parser(pdbfile).parse_structure()
            
    def prediction(self, target_id, type, ss=False):
        
        info = self.target_details(target_id)
        if not info:
            raise ValueError('No such Target ID in the database: {0}'.format(target_id))
        row = info[0]
        
        id = row["Accession"]
        length = float(row["Length"])
        overlap = float(row["MaxOverlap"]) / (length or 1.)
        
        native = self.structure(id[:4], id[4]).chains[id[4]]
        target = self._factory.target(id, length, native.residues, overlap)        
        
        source = None
        
        for row in self.assignments(target_id, type):
            
            src_accession = row['Source'][:4]
            src_chain = row['Source'][4]
            
            if source is None or source.accession != src_accession:
                try:
                    source = self.structure(src_accession, src_chain)
                except (IOError, ValueError) as ex:
                    target.errors.append(ex)
                    continue
            
            if src_chain == '_':
                frag_chain = source.first_chain
            else:
                frag_chain = source.chains[src_chain]
            if not frag_chain.has_torsion:
                frag_chain.compute_torsion()
            
            fragment = self._factory.assignment(
                                        source=frag_chain,
                                        start=row['SourceStart'],
                                        end=row['SourceEnd'],
                                        id=row['FragmentName'],
                                        qstart=row['Start'],
                                        qend=row['End'],
                                        probability=row['Probability'],
                                        score=row['Score'],
                                        neff=row['Neff'],
                                        rmsd=row['RMSD'],
                                        tm_score=row['TMScore'],
                                        internal_id=row['InternalID'])
                            
            target.assign(fragment)
        
        if ss:
            self._attach_sec_structure(target, target_id, type)
        
        return target

    def _attach_sec_structure(self, target, target_id, type):
        
        ss = {}
        
        for row in self.assignments_sec_structure(target_id, type):
            frag_id, state = row["AssignmentID"], row["DSSP"]
            if row[frag_id] not in ss:
                ss[frag_id] = []
                
            ss[frag_id].append(state)
        
        for a in target.matches:
            if a.internal_id in ss:
                dssp = ''.join(ss[a.internal_id])
                a.secondary_structure = dssp