This file is indexed.

/usr/bin/dipy_fit_tensor is in python-dipy 0.7.1-2.

This file is owned by root:root, with mode 0o755.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
#!/usr/bin/python
from __future__ import division, print_function, absolute_import

import os
import numpy as np
import nibabel as nib
from subprocess import check_call, CalledProcessError
from optparse import OptionParser
from dipy.core.gradients import gradient_table
from dipy.reconst.dti import TensorModel
from dipy.io.utils import nifti1_symmat
from dipy.io.bvectxt import read_bvec_file, orientation_to_string
from nibabel.trackvis import empty_header, write

usage = """fit_tensor [options] dwi_images"""
parser = OptionParser(usage)
parser.add_option("-b","--bvec",help="text file with gradient directions")
parser.add_option("-r","--root",help="root for files to be saved")
parser.add_option("-m","--mask",default="BET",
                  help="use BET by default, --mask=none to not use mask")
parser.add_option("--threshold",help="threshold passed to BET", default='.2')
parser.add_option("--min_signal",help="minimum valid singal value",
                  type='float', default=1.)
parser.add_option("--save-tensor", action='store_true', help="Save tensor in "
                        "nifti symmat format")
parser.add_option("--scale", type='float', default=1., help="used to scale "
                        "tensor file when --save-tensor is used")
opts, args = parser.parse_args()

def dipysave(img, filename):
    """Some DTI/tools require the qform code to be 1. We set the affine, qform,
    and sfrom to be the same for maximum portibility.
    """
    affine = img.get_affine()
    img.set_sform(affine, 1)
    img.set_qform(affine, 1)
    nib.save(img, filename)

if len(args) != 1:
    parser.print_help()
    parser.exit(2)
dwi_file = args[0]

gzip_exts = set([".gz"])
if opts.root is None:
    pth, file = os.path.split(dwi_file)
    root, ext = os.path.splitext(dwi_file)
    if ext.lower() in gzip_exts:
        root, _ = os.path.splitext(root)
    root = os.path.join(pth, root)
else:
    root = opts.root

if opts.bvec is None:
    bvec = root+'.bvec'
else:
    bvec = opts.bvec

img = nib.load(dwi_file)
affine = img.get_affine()
voxel_size = img.get_header().get_zooms()[:3]
data = img.get_data()
bvec, bval = read_bvec_file(bvec)
gtab = gradient_table(bval, bvec)

t2di = data[..., gtab.b0s_mask].mean(-1)
t2di = np.asarray(t2di, 'float32')
dipysave(nib.Nifti1Image(t2di, affine), root+'_t2di.nii.gz')
del t2di

mask = opts.mask
if mask == 'BET':
    mask_file = root + '_mask.nii.gz'
    env = os.environ
    env['FSLOUTPUTTYPE'] = 'NIFTI_GZ'
    try:
        check_call(['bet2', root+'_t2di', root, '-n',
                    '-f', opts.threshold, '-m'], env=env)
        mask = mask_file
    except (OSError, CalledProcessError):
        mask = None
elif mask.lower() == 'none':
    mask = None

if mask is not None:
    mask = nib.load(mask).get_data() > 0
else:
    mask = np.ones(data.shape[:-1], dtype=bool)

ten_model = TensorModel(gtab, min_signal=opts.min_signal)
ten = ten_model.fit(data, mask=mask)

if opts.save_tensor:
    lower_triangular = ten.lower_triangular()
    lower_triangular *= opts.scale
    lower_triangular = lower_triangular.astype('float32')
    tensor_img = nifti1_symmat(lower_triangular, affine)
    dipysave(tensor_img, root+'_tensor.nii.gz')
    del tensor_img, lower_triangular

dipysave(nib.Nifti1Image(ten.ad.astype("float32"), affine), root+'_ad.nii.gz')
dipysave(nib.Nifti1Image(ten.rd.astype("float32"), affine), root+'_rd.nii.gz')
dipysave(nib.Nifti1Image(ten.md.astype("float32"), affine), root+'_md.nii.gz')
dipysave(nib.Nifti1Image(ten.fa.astype("float32"), affine), root+'_fa.nii.gz')

dfa = np.abs(ten.fa[..., None] * ten.evecs[..., 0])
dfa *= 256*(1.-np.finfo(float).eps)
assert dfa.max() < 256
assert dfa.min() >= 0
dfa = dfa.astype('uint8')
dtype = [('R', 'uint8'), ('G', 'uint8'), ('B', 'uint8')]
dfa = dfa.view(dtype)
dfa.shape = dfa.shape[:-1]
dipysave(nib.Nifti1Image(dfa, affine), root+'_dirFA.nii.gz')

trk_hdr = empty_header()
trk_hdr['voxel_order'] = orientation_to_string(nib.io_orientation(affine))
trk_hdr['dim'] = ten.shape
trk_hdr['voxel_size'] = voxel_size
trk_hdr['vox_to_ras'] = affine
# One streamline with two points at [0, 0, 0]
dummy_track = [(np.zeros((2,3), dtype='float32'), None, None)]
write(root+'_dummy.trk', dummy_track, trk_hdr)