/usr/share/pyshared/flup/server/scgi.py is in python-flup 1.0.2-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 | # Copyright (c) 2005, 2006 Allan Saddi <allan@saddi.com>
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
# OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
# HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
# OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
# SUCH DAMAGE.
#
# $Id$
"""
scgi - an SCGI/WSGI gateway.
For more information about SCGI and mod_scgi for Apache1/Apache2, see
<http://www.mems-exchange.org/software/scgi/>.
For more information about the Web Server Gateway Interface, see
<http://www.python.org/peps/pep-0333.html>.
Example usage:
#!/usr/bin/env python
import sys
from myapplication import app # Assume app is your WSGI application object
from scgi import WSGIServer
ret = WSGIServer(app).run()
sys.exit(ret and 42 or 0)
See the documentation for WSGIServer for more information.
About the bit of logic at the end:
Upon receiving SIGHUP, the python script will exit with status code 42. This
can be used by a wrapper script to determine if the python script should be
re-run. When a SIGINT or SIGTERM is received, the script exits with status
code 0, possibly indicating a normal exit.
Example wrapper script:
#!/bin/sh
STATUS=42
while test $STATUS -eq 42; do
python "$@" that_script_above.py
STATUS=$?
done
"""
__author__ = 'Allan Saddi <allan@saddi.com>'
__version__ = '$Revision$'
import logging
import socket
from flup.server.scgi_base import BaseSCGIServer, Connection, NoDefault
from flup.server.threadedserver import ThreadedServer
__all__ = ['WSGIServer']
class WSGIServer(BaseSCGIServer, ThreadedServer):
"""
SCGI/WSGI server. For information about SCGI (Simple Common Gateway
Interface), see <http://www.mems-exchange.org/software/scgi/>.
This server is similar to SWAP <http://www.idyll.org/~t/www-tools/wsgi/>,
another SCGI/WSGI server.
It differs from SWAP in that it isn't based on scgi.scgi_server and
therefore, it allows me to implement concurrency using threads. (Also,
this server was written from scratch and really has no other depedencies.)
Which server to use really boils down to whether you want multithreading
or forking. (But as an aside, I've found scgi.scgi_server's implementation
of preforking to be quite superior. So if your application really doesn't
mind running in multiple processes, go use SWAP. ;)
"""
def __init__(self, application, scriptName=NoDefault, environ=None,
multithreaded=True, multiprocess=False,
bindAddress=('localhost', 4000), umask=None,
allowedServers=None,
loggingLevel=logging.INFO, debug=True, **kw):
"""
scriptName is the initial portion of the URL path that "belongs"
to your application. It is used to determine PATH_INFO (which doesn't
seem to be passed in). An empty scriptName means your application
is mounted at the root of your virtual host.
environ, which must be a dictionary, can contain any additional
environment variables you want to pass to your application.
bindAddress is the address to bind to, which must be a string or
a tuple of length 2. If a tuple, the first element must be a string,
which is the host name or IPv4 address of a local interface. The
2nd element of the tuple is the port number. If a string, it will
be interpreted as a filename and a UNIX socket will be opened.
If binding to a UNIX socket, umask may be set to specify what
the umask is to be changed to before the socket is created in the
filesystem. After the socket is created, the previous umask is
restored.
allowedServers must be None or a list of strings representing the
IPv4 addresses of servers allowed to connect. None means accept
connections from anywhere.
loggingLevel sets the logging level of the module-level logger.
"""
BaseSCGIServer.__init__(self, application,
scriptName=scriptName,
environ=environ,
multithreaded=multithreaded,
multiprocess=multiprocess,
bindAddress=bindAddress,
umask=umask,
allowedServers=allowedServers,
loggingLevel=loggingLevel,
debug=debug)
for key in ('jobClass', 'jobArgs'):
if kw.has_key(key):
del kw[key]
ThreadedServer.__init__(self, jobClass=Connection, jobArgs=(self,),
**kw)
def run(self):
"""
Main loop. Call this after instantiating WSGIServer. SIGHUP, SIGINT,
SIGQUIT, SIGTERM cause it to cleanup and return. (If a SIGHUP
is caught, this method returns True. Returns False otherwise.)
"""
self.logger.info('%s starting up', self.__class__.__name__)
try:
sock = self._setupSocket()
except socket.error, e:
self.logger.error('Failed to bind socket (%s), exiting', e[1])
return False
ret = ThreadedServer.run(self, sock)
self._cleanupSocket(sock)
self.logger.info('%s shutting down%s', self.__class__.__name__,
self._hupReceived and ' (reload requested)' or '')
return ret
if __name__ == '__main__':
def test_app(environ, start_response):
"""Probably not the most efficient example."""
import cgi
start_response('200 OK', [('Content-Type', 'text/html')])
yield '<html><head><title>Hello World!</title></head>\n' \
'<body>\n' \
'<p>Hello World!</p>\n' \
'<table border="1">'
names = environ.keys()
names.sort()
for name in names:
yield '<tr><td>%s</td><td>%s</td></tr>\n' % (
name, cgi.escape(`environ[name]`))
form = cgi.FieldStorage(fp=environ['wsgi.input'], environ=environ,
keep_blank_values=1)
if form.list:
yield '<tr><th colspan="2">Form data</th></tr>'
for field in form.list:
yield '<tr><td>%s</td><td>%s</td></tr>\n' % (
field.name, field.value)
yield '</table>\n' \
'</body></html>\n'
from wsgiref import validate
test_app = validate.validator(test_app)
WSGIServer(test_app,
loggingLevel=logging.DEBUG).run()
|