This file is indexed.

/usr/share/pyshared/gaphas/solver.py is in python-gaphas 0.7.2-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
"""
Constraint solver allows to define constraint between two or more different
variables and keep this constraint always true when one or more of the
constrained variables change. For example, one may want to keep two
variables always equal.

Variables change and at some point of time we want to make all constraints
valid again. This process is called solving constraints.

Gaphas' solver allows to define constraints between Variable instances.
Constraint classes are defined in `gaphas.constraint` module.

How It Works
------------
Every constraint contains list of variables and has to be registered in
solver object. Variables change (`Variable.dirty()`, `Solver.request_resolve()`
methods) and their constraints are marked by solver as dirty. To solve
constraints, solver loops through dirty constraints and asks constraint for
a variable (called weakest variable), which

- has the lowest strength
- or if there are many variables with the same, lowest strength value
  return first unchanged variable with lowest strength
- or if there is no unchanged, then return the first changed with the
  lowest strength

(weakest variable invariants defined above)

Having weakest variable (`constraint.Constraint.weakest()` method) every
constraint is being asked to solve itself (`constraint.Constraint.solve_for()`
method) changing appropriate variables to make the constraint valid again.
"""

from __future__ import division

__version__ = "$Revision$"
# $HeadURL$

from operator import isCallable
from state import observed, reversible_pair, reversible_property

# epsilon for float comparison
# is simple abs(x - y) > EPSILON enough for canvas needs?
EPSILON = 1e-6

# Variable Strengths:
VERY_WEAK = 0
WEAK = 10
NORMAL = 20
STRONG = 30
VERY_STRONG = 40
REQUIRED = 100


class Variable(object):
    """
    Representation of a variable in the constraint solver.
    Each Variable has a @value and a @strength. Ina constraint the
    weakest variables are changed.
    
    You can even do some calculating with it. The Variable always represents
    a float variable.
    """

    def __init__(self, value=0.0, strength=NORMAL):
        self._value = float(value)
        self._strength = strength

        # These variables are set by the Solver:
        self._solver = None
        self._constraints = set()

    @observed
    def _set_strength(self, strength):
        self._strength = strength
        for c in self._constraints:
            c.create_weakest_list()

    strength = reversible_property(lambda s: s._strength, _set_strength)

    def dirty(self):
        """
        Mark the variable dirty in both the constraint solver and attached
        constraints.
        
        Variables are marked dirty also during constraints solving to
        solve all dependent constraints, i.e. two equals constraints
        between 3 variables.
        """
        solver = self._solver
        if not solver:
            return

        solver.request_resolve(self)

    @observed
    def set_value(self, value):
        oldval = self._value
        if abs(oldval - value) > EPSILON:
            #print id(self), oldval, value
            self._value = float(value)
            self.dirty()

    value = reversible_property(lambda s: s._value, set_value)

    def __str__(self):
        return 'Variable(%g, %d)' % (self._value, self._strength)
    __repr__ = __str__

    def __float__(self):
        return float(self._value)

    def __eq__(self, other):
        """
        >>> Variable(5) == 5
        True
        >>> Variable(5) == 4
        False
        >>> Variable(5) != 5
        False
        """
        return abs(self._value - other) < EPSILON

    def __ne__(self, other):
        """
        >>> Variable(5) != 4
        True
        >>> Variable(5) != 5
        False
        """
        return abs(self._value - other) > EPSILON

    def __gt__(self, other):
        """
        >>> Variable(5) > 4
        True
        >>> Variable(5) > 5
        False
        """
        return self._value.__gt__(float(other))

    def __lt__(self, other):
        """
        >>> Variable(5) < 4
        False
        >>> Variable(5) < 6
        True
        """
        return self._value.__lt__(float(other))

    def __ge__(self, other):
        """
        >>> Variable(5) >= 5
        True
        """
        return self._value.__ge__(float(other))

    def __le__(self, other):
        """
        >>> Variable(5) <= 5
        True
        """
        return self._value.__le__(float(other))

    def __add__(self, other):
        """
        >>> Variable(5) + 4
        9.0
        """
        return self._value.__add__(float(other))

    def __sub__(self, other):
        """
        >>> Variable(5) - 4
        1.0
        >>> Variable(5) - Variable(4)
        1.0
        """
        return self._value.__sub__(float(other))

    def __mul__(self, other):
        """
        >>> Variable(5) * 4
        20.0
        >>> Variable(5) * Variable(4)
        20.0
        """
        return self._value.__mul__(float(other))

    def __floordiv__(self, other):
        """
        >>> Variable(21) // 4
        5.0
        >>> Variable(21) // Variable(4)
        5.0
        """
        return self._value.__floordiv__(float(other))

    def __mod__(self, other):
        """
        >>> Variable(5) % 4
        1.0
        >>> Variable(5) % Variable(4)
        1.0
        """
        return self._value.__mod__(float(other))

    def __divmod__(self, other):
        """
        >>> divmod(Variable(21), 4)
        (5.0, 1.0)
        >>> divmod(Variable(21), Variable(4))
        (5.0, 1.0)
        """
        return self._value.__divmod__(float(other))

    def __pow__(self, other):
        """
        >>> pow(Variable(5), 4)
        625.0
        >>> pow(Variable(5), Variable(4))
        625.0
        """
        return self._value.__pow__(float(other))

    def __div__(self, other):
        """
        >>> Variable(5) / 4.
        1.25
        >>> Variable(5) / Variable(4)
        1.25
        """
        return self._value.__div__(float(other))

    def __truediv__(self, other):
        """
        >>> Variable(5.) / 4
        1.25
        >>> 10 / Variable(5.)
        2.0
        """
        return self._value.__truediv__(float(other))

    # .. And the other way around:

    def __radd__(self, other):
        """
        >>> 4 + Variable(5)
        9.0
        >>> Variable(4) + Variable(5)
        9.0
        """
        return self._value.__radd__(float(other))

    def __rsub__(self, other):
        """
        >>> 6 - Variable(5)
        1.0
        """
        return self._value.__rsub__(other)

    def __rmul__(self, other):
        """
        >>> 4 * Variable(5)
        20.0
        """
        return self._value.__rmul__(other)

    def __rfloordiv__(self, other):
        """
        >>> 21 // Variable(4)
        5.0
        """
        return self._value.__rfloordiv__(other)

    def __rmod__(self, other):
        """
        >>> 5 % Variable(4)
        1.0
        """
        return self._value.__rmod__(other)

    def __rdivmod__(self, other):
        """
        >>> divmod(21, Variable(4))
        (5.0, 1.0)
        """
        return self._value.__rdivmod__(other)

    def __rpow__(self, other):
        """
        >>> pow(4, Variable(5))
        1024.0
        """
        return self._value.__rpow__(other)

    def __rdiv__(self, other):
        """
        >>> 5 / Variable(4.)
        1.25
        """
        return self._value.__rdiv__(other)

    def __rtruediv__(self, other):
        """
        >>> 5. / Variable(4)
        1.25
        """
        return self._value.__rtruediv__(other)


class Projection(object):
    """
    Projections are used to convert values from one space to another,
    e.g. from Canvas to Item space or visa versa.

    In order to be a Projection the ``value`` and ``strength`` properties
    should be implemented and a method named ``variable()`` should be present.

    Projections should inherit from this class.

    Projections may be nested.

    This default implementation projects a variable to it's own:

    >>> v = Variable(4.0)
    >>> v
    Variable(4, 20)
    >>> p = Projection(v)
    >>> p.value
    4.0
    >>> p.value = -1
    >>> p.value
    -1.0
    >>> v.value
    -1.0
    >>> p.strength
    20
    >>> p.variable()
    Variable(-1, 20)
    """

    def __init__(self, var):
        self._var = var

    def _set_value(self, value):
        self._var.value = value

    value = property(lambda s: s._var.value, _set_value)

    strength = property(lambda s: s._var.strength)

    def variable(self):
        """
        Return the variable owned by the projection.
        """
        return self._var

    def __float__(self):
        return float(self.variable()._value)

    def __str__(self):
        return '%s(%s)' % (self.__class__.__name__, self.variable())
    __repr__ = __str__


class Solver(object):
    """
    Solve constraints. A constraint should have accompanying
    variables.
    """

    def __init__(self):
        # a dict of constraint -> name/variable mappings
        self._constraints = set()
        self._marked_cons = []
        self._solving = False

    constraints = property(lambda s: s._constraints)


    def request_resolve(self, variable, projections_only=False):
        """
        Mark a variable as "dirty". This means it it solved the next time
        the constraints are resolved.

        If projections_only is set to True, only constraints using the
        variable through a Projection instance (e.i. variable itself is not
        in `constraint.Constraint.variables()`) are marked.

        Example:

        >>> from constraint import EquationConstraint
        >>> a, b, c = Variable(1.0), Variable(2.0), Variable(3.0)
        >>> s = Solver()
        >>> c_eq = EquationConstraint(lambda a,b: a+b, a=a, b=b)
        >>> s.add_constraint(c_eq)
        EquationConstraint(<lambda>, a=Variable(1, 20), b=Variable(2, 20))
        >>> c_eq._weakest
        [Variable(1, 20), Variable(2, 20)]
        >>> s._marked_cons
        [EquationConstraint(<lambda>, a=Variable(1, 20), b=Variable(2, 20))]
        >>> a.value=5.0
        >>> c_eq.weakest()
        Variable(2, 20)
        >>> b.value=2.0
        >>> c_eq.weakest()
        Variable(2, 20)
        >>> a.value=5.0
        >>> c_eq.weakest()
        Variable(2, 20)
        """
        # Peel of Projections:
        while isinstance(variable, Projection):
            variable = variable.variable()
        for c in variable._constraints:
            if not projections_only or c._solver_has_projections:
                if not self._solving:
                    if c in self._marked_cons:
                        self._marked_cons.remove(c)
                    c.mark_dirty(variable)
                    self._marked_cons.append(c)
                else:
                    c.mark_dirty(variable)
                    self._marked_cons.append(c)
                    if self._marked_cons.count(c) > 100:
                        raise JuggleError, 'Variable juggling detected, constraint %s resolved %d times out of %d' % (c, self._marked_cons.count(c), len(self._marked_cons))


    @observed
    def add_constraint(self, constraint):
        """
        Add a constraint.
        The actual constraint is returned, so the constraint can be removed
        later on.

        Example:

        >>> from constraint import EquationConstraint
        >>> s = Solver()
        >>> a, b = Variable(), Variable(2.0)
        >>> s.add_constraint(EquationConstraint(lambda a, b: a -b, a=a, b=b))
        EquationConstraint(<lambda>, a=Variable(0, 20), b=Variable(2, 20))
        >>> len(s._constraints)
        1
        >>> a.value
        0.0
        >>> b.value
        2.0
        >>> len(s._constraints)
        1
        """
        assert constraint, 'No constraint (%s)' % (constraint,)
        self._constraints.add(constraint)
        self._marked_cons.append(constraint)
        constraint._solver_has_projections = False
        for v in constraint.variables():
            while isinstance(v, Projection):
                v = v.variable()
                constraint._solver_has_projections = True
            v._constraints.add(constraint)
            v._solver = self
        #print 'added constraint', constraint
        return constraint

    @observed
    def remove_constraint(self, constraint):
        """
        Remove a constraint from the solver

        >>> from constraint import EquationConstraint
        >>> s = Solver()
        >>> a, b = Variable(), Variable(2.0)
        >>> c = s.add_constraint(EquationConstraint(lambda a, b: a -b, a=a, b=b))
        >>> c
        EquationConstraint(<lambda>, a=Variable(0, 20), b=Variable(2, 20))
        >>> s.remove_constraint(c)
        >>> s._marked_cons
        []
        >>> s._constraints
        set([])

        Removing a constraint twice has no effect:

        >>> s.remove_constraint(c)
        """
        assert constraint, 'No constraint (%s)' % (constraint,)
        for v in constraint.variables():
            while isinstance(v, Projection):
                v = v.variable()
            v._constraints.discard(constraint)
        self._constraints.discard(constraint)
        while constraint in self._marked_cons:
            self._marked_cons.remove(constraint)

    reversible_pair(add_constraint, remove_constraint)


    def request_resolve_constraint(self, c):
        """
        Request resolving a constraint.
        """
        self._marked_cons.append(c)


    def constraints_with_variable(self, *variables):
        """
        Return an iterator of constraints that work with variable.
        The variable in question should be exposed by the constraints
        `constraint.Constraint.variables()` method.

        >>> from constraint import EquationConstraint
        >>> s = Solver()
        >>> a, b, c = Variable(), Variable(2.0), Variable(4.0)
        >>> eq_a_b = s.add_constraint(EquationConstraint(lambda a, b: a -b, a=a, b=b))
        >>> eq_a_b
        EquationConstraint(<lambda>, a=Variable(0, 20), b=Variable(2, 20))
        >>> eq_a_c = s.add_constraint(EquationConstraint(lambda a, b: a -b, a=a, b=c))
        >>> eq_a_c
        EquationConstraint(<lambda>, a=Variable(0, 20), b=Variable(4, 20))

        And now for some testing:

        >>> eq_a_b in s.constraints_with_variable(a)
        True
        >>> eq_a_c in s.constraints_with_variable(a)
        True
        >>> eq_a_b in s.constraints_with_variable(a, b)
        True
        >>> eq_a_c in s.constraints_with_variable(a, b)
        False

        Using another variable with the same value does not work:

        >>> d = Variable(2.0)
        >>> eq_a_b in s.constraints_with_variable(a, d)
        False

        This also works for projections:

        >>> eq_pr_a_b = s.add_constraint(EquationConstraint(lambda a, b: a -b, a=Projection(a), b=Projection(b)))
        >>> eq_pr_a_b   # doctest: +ELLIPSIS
        EquationConstraint(<lambda>, a=Projection(Variable(0, 20)), b=Projection(Variable(2, 20)))

        >>> eq_pr_a_b in s.constraints_with_variable(a, b)
        True
        >>> eq_pr_a_b in s.constraints_with_variable(a, c)
        False
        >>> eq_pr_a_b in s.constraints_with_variable(a, d)
        False
        """
        # Use a copy of the original set, so constraints may be
        # deleted in the meantime.
        variables = set(variables)
        for c in set(self._constraints):
            if variables.issubset(set(c.variables())):
                yield c
            elif c._solver_has_projections:
                found = True
                for v in c.variables():
                    if v in variables:
                        continue
                    while isinstance(v, Projection):
                        v = v.variable()
                        if v in variables:
                            break
                    else:
                        found = False
                    if not found:
                        break # quit for loop, variable not in constraint
                else:
                    # All iteration have completed succesfully,
                    # so all variables are in the constraint
                    yield c
                    

    def solve(self):
        """
        Example:

        >>> from constraint import EquationConstraint
        >>> a, b, c = Variable(1.0), Variable(2.0), Variable(3.0)
        >>> s = Solver()
        >>> s.add_constraint(EquationConstraint(lambda a,b: a+b, a=a, b=b))
        EquationConstraint(<lambda>, a=Variable(1, 20), b=Variable(2, 20))
        >>> a.value = 5.0
        >>> s.solve()
        >>> len(s._marked_cons)
        0
        >>> b._value
        -5.0
        >>> s.add_constraint(EquationConstraint(lambda a,b: a+b, a=b, b=c))
        EquationConstraint(<lambda>, a=Variable(-5, 20), b=Variable(3, 20))
        >>> len(s._constraints)
        2
        >>> len(s._marked_cons)
        1
        >>> b._value
        -5.0
        >>> s.solve()
        >>> b._value
        -3.0
        >>> a.value = 10
        >>> s.solve()
        >>> c._value
        10.0
        """
        marked_cons = self._marked_cons
        try:
            self._solving = True

            # Solve each constraint. Using a counter makes it
            # possible to also solve constraints that are marked as
            # a result of other variabled being solved.
            n = 0
            while n < len(marked_cons):
                c = marked_cons[n]
                if not c.disabled:
                    wvar = c.weakest()
                    c.solve_for(wvar)
                n += 1

            self._marked_cons = []
        finally:
            self._solving = False


class solvable(object):
    """
    Easy-to-use drop Variable descriptor.

    >>> class A(object):
    ...     x = solvable(varname='_v_x')
    ...     y = solvable(STRONG)
    ...     def __init__(self):
    ...         self.x = 12
    >>> a = A()
    >>> a.x
    Variable(12, 20)
    >>> a._v_x
    Variable(12, 20)
    >>> a.x = 3
    >>> a.x 
    Variable(3, 20)
    >>> a.y 
    Variable(0, 30)
    """

    def __init__(self, strength=NORMAL, varname=None):
        self._strength = strength
        self._varname = varname or '_variable_%x' % id(self)

    def __get__(self, obj, class_=None):
        if not obj:
            return self
        try:
            return getattr(obj, self._varname)
        except AttributeError:
            setattr(obj, self._varname, Variable(strength=self._strength))
            return getattr(obj, self._varname)

    def __set__(self, obj, value):
        try:
            getattr(obj, self._varname).value = float(value)
        except AttributeError:
            v = Variable(strength=self._strength)
            setattr(obj, self._varname, v)
            v.value = value




class JuggleError(AssertionError):
    """
    Variable juggling exception. Raised when constraint's variables are
    marking each other dirty forever.
    """


__test__ = {
    'Solver.add_constraint': Solver.add_constraint,
    'Solver.remove_constraint': Solver.remove_constraint,
    }


# vim:sw=4:et:ai