/usr/share/pyshared/gaphas/solver.py is in python-gaphas 0.7.2-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 | """
Constraint solver allows to define constraint between two or more different
variables and keep this constraint always true when one or more of the
constrained variables change. For example, one may want to keep two
variables always equal.
Variables change and at some point of time we want to make all constraints
valid again. This process is called solving constraints.
Gaphas' solver allows to define constraints between Variable instances.
Constraint classes are defined in `gaphas.constraint` module.
How It Works
------------
Every constraint contains list of variables and has to be registered in
solver object. Variables change (`Variable.dirty()`, `Solver.request_resolve()`
methods) and their constraints are marked by solver as dirty. To solve
constraints, solver loops through dirty constraints and asks constraint for
a variable (called weakest variable), which
- has the lowest strength
- or if there are many variables with the same, lowest strength value
return first unchanged variable with lowest strength
- or if there is no unchanged, then return the first changed with the
lowest strength
(weakest variable invariants defined above)
Having weakest variable (`constraint.Constraint.weakest()` method) every
constraint is being asked to solve itself (`constraint.Constraint.solve_for()`
method) changing appropriate variables to make the constraint valid again.
"""
from __future__ import division
__version__ = "$Revision$"
# $HeadURL$
from operator import isCallable
from state import observed, reversible_pair, reversible_property
# epsilon for float comparison
# is simple abs(x - y) > EPSILON enough for canvas needs?
EPSILON = 1e-6
# Variable Strengths:
VERY_WEAK = 0
WEAK = 10
NORMAL = 20
STRONG = 30
VERY_STRONG = 40
REQUIRED = 100
class Variable(object):
"""
Representation of a variable in the constraint solver.
Each Variable has a @value and a @strength. Ina constraint the
weakest variables are changed.
You can even do some calculating with it. The Variable always represents
a float variable.
"""
def __init__(self, value=0.0, strength=NORMAL):
self._value = float(value)
self._strength = strength
# These variables are set by the Solver:
self._solver = None
self._constraints = set()
@observed
def _set_strength(self, strength):
self._strength = strength
for c in self._constraints:
c.create_weakest_list()
strength = reversible_property(lambda s: s._strength, _set_strength)
def dirty(self):
"""
Mark the variable dirty in both the constraint solver and attached
constraints.
Variables are marked dirty also during constraints solving to
solve all dependent constraints, i.e. two equals constraints
between 3 variables.
"""
solver = self._solver
if not solver:
return
solver.request_resolve(self)
@observed
def set_value(self, value):
oldval = self._value
if abs(oldval - value) > EPSILON:
#print id(self), oldval, value
self._value = float(value)
self.dirty()
value = reversible_property(lambda s: s._value, set_value)
def __str__(self):
return 'Variable(%g, %d)' % (self._value, self._strength)
__repr__ = __str__
def __float__(self):
return float(self._value)
def __eq__(self, other):
"""
>>> Variable(5) == 5
True
>>> Variable(5) == 4
False
>>> Variable(5) != 5
False
"""
return abs(self._value - other) < EPSILON
def __ne__(self, other):
"""
>>> Variable(5) != 4
True
>>> Variable(5) != 5
False
"""
return abs(self._value - other) > EPSILON
def __gt__(self, other):
"""
>>> Variable(5) > 4
True
>>> Variable(5) > 5
False
"""
return self._value.__gt__(float(other))
def __lt__(self, other):
"""
>>> Variable(5) < 4
False
>>> Variable(5) < 6
True
"""
return self._value.__lt__(float(other))
def __ge__(self, other):
"""
>>> Variable(5) >= 5
True
"""
return self._value.__ge__(float(other))
def __le__(self, other):
"""
>>> Variable(5) <= 5
True
"""
return self._value.__le__(float(other))
def __add__(self, other):
"""
>>> Variable(5) + 4
9.0
"""
return self._value.__add__(float(other))
def __sub__(self, other):
"""
>>> Variable(5) - 4
1.0
>>> Variable(5) - Variable(4)
1.0
"""
return self._value.__sub__(float(other))
def __mul__(self, other):
"""
>>> Variable(5) * 4
20.0
>>> Variable(5) * Variable(4)
20.0
"""
return self._value.__mul__(float(other))
def __floordiv__(self, other):
"""
>>> Variable(21) // 4
5.0
>>> Variable(21) // Variable(4)
5.0
"""
return self._value.__floordiv__(float(other))
def __mod__(self, other):
"""
>>> Variable(5) % 4
1.0
>>> Variable(5) % Variable(4)
1.0
"""
return self._value.__mod__(float(other))
def __divmod__(self, other):
"""
>>> divmod(Variable(21), 4)
(5.0, 1.0)
>>> divmod(Variable(21), Variable(4))
(5.0, 1.0)
"""
return self._value.__divmod__(float(other))
def __pow__(self, other):
"""
>>> pow(Variable(5), 4)
625.0
>>> pow(Variable(5), Variable(4))
625.0
"""
return self._value.__pow__(float(other))
def __div__(self, other):
"""
>>> Variable(5) / 4.
1.25
>>> Variable(5) / Variable(4)
1.25
"""
return self._value.__div__(float(other))
def __truediv__(self, other):
"""
>>> Variable(5.) / 4
1.25
>>> 10 / Variable(5.)
2.0
"""
return self._value.__truediv__(float(other))
# .. And the other way around:
def __radd__(self, other):
"""
>>> 4 + Variable(5)
9.0
>>> Variable(4) + Variable(5)
9.0
"""
return self._value.__radd__(float(other))
def __rsub__(self, other):
"""
>>> 6 - Variable(5)
1.0
"""
return self._value.__rsub__(other)
def __rmul__(self, other):
"""
>>> 4 * Variable(5)
20.0
"""
return self._value.__rmul__(other)
def __rfloordiv__(self, other):
"""
>>> 21 // Variable(4)
5.0
"""
return self._value.__rfloordiv__(other)
def __rmod__(self, other):
"""
>>> 5 % Variable(4)
1.0
"""
return self._value.__rmod__(other)
def __rdivmod__(self, other):
"""
>>> divmod(21, Variable(4))
(5.0, 1.0)
"""
return self._value.__rdivmod__(other)
def __rpow__(self, other):
"""
>>> pow(4, Variable(5))
1024.0
"""
return self._value.__rpow__(other)
def __rdiv__(self, other):
"""
>>> 5 / Variable(4.)
1.25
"""
return self._value.__rdiv__(other)
def __rtruediv__(self, other):
"""
>>> 5. / Variable(4)
1.25
"""
return self._value.__rtruediv__(other)
class Projection(object):
"""
Projections are used to convert values from one space to another,
e.g. from Canvas to Item space or visa versa.
In order to be a Projection the ``value`` and ``strength`` properties
should be implemented and a method named ``variable()`` should be present.
Projections should inherit from this class.
Projections may be nested.
This default implementation projects a variable to it's own:
>>> v = Variable(4.0)
>>> v
Variable(4, 20)
>>> p = Projection(v)
>>> p.value
4.0
>>> p.value = -1
>>> p.value
-1.0
>>> v.value
-1.0
>>> p.strength
20
>>> p.variable()
Variable(-1, 20)
"""
def __init__(self, var):
self._var = var
def _set_value(self, value):
self._var.value = value
value = property(lambda s: s._var.value, _set_value)
strength = property(lambda s: s._var.strength)
def variable(self):
"""
Return the variable owned by the projection.
"""
return self._var
def __float__(self):
return float(self.variable()._value)
def __str__(self):
return '%s(%s)' % (self.__class__.__name__, self.variable())
__repr__ = __str__
class Solver(object):
"""
Solve constraints. A constraint should have accompanying
variables.
"""
def __init__(self):
# a dict of constraint -> name/variable mappings
self._constraints = set()
self._marked_cons = []
self._solving = False
constraints = property(lambda s: s._constraints)
def request_resolve(self, variable, projections_only=False):
"""
Mark a variable as "dirty". This means it it solved the next time
the constraints are resolved.
If projections_only is set to True, only constraints using the
variable through a Projection instance (e.i. variable itself is not
in `constraint.Constraint.variables()`) are marked.
Example:
>>> from constraint import EquationConstraint
>>> a, b, c = Variable(1.0), Variable(2.0), Variable(3.0)
>>> s = Solver()
>>> c_eq = EquationConstraint(lambda a,b: a+b, a=a, b=b)
>>> s.add_constraint(c_eq)
EquationConstraint(<lambda>, a=Variable(1, 20), b=Variable(2, 20))
>>> c_eq._weakest
[Variable(1, 20), Variable(2, 20)]
>>> s._marked_cons
[EquationConstraint(<lambda>, a=Variable(1, 20), b=Variable(2, 20))]
>>> a.value=5.0
>>> c_eq.weakest()
Variable(2, 20)
>>> b.value=2.0
>>> c_eq.weakest()
Variable(2, 20)
>>> a.value=5.0
>>> c_eq.weakest()
Variable(2, 20)
"""
# Peel of Projections:
while isinstance(variable, Projection):
variable = variable.variable()
for c in variable._constraints:
if not projections_only or c._solver_has_projections:
if not self._solving:
if c in self._marked_cons:
self._marked_cons.remove(c)
c.mark_dirty(variable)
self._marked_cons.append(c)
else:
c.mark_dirty(variable)
self._marked_cons.append(c)
if self._marked_cons.count(c) > 100:
raise JuggleError, 'Variable juggling detected, constraint %s resolved %d times out of %d' % (c, self._marked_cons.count(c), len(self._marked_cons))
@observed
def add_constraint(self, constraint):
"""
Add a constraint.
The actual constraint is returned, so the constraint can be removed
later on.
Example:
>>> from constraint import EquationConstraint
>>> s = Solver()
>>> a, b = Variable(), Variable(2.0)
>>> s.add_constraint(EquationConstraint(lambda a, b: a -b, a=a, b=b))
EquationConstraint(<lambda>, a=Variable(0, 20), b=Variable(2, 20))
>>> len(s._constraints)
1
>>> a.value
0.0
>>> b.value
2.0
>>> len(s._constraints)
1
"""
assert constraint, 'No constraint (%s)' % (constraint,)
self._constraints.add(constraint)
self._marked_cons.append(constraint)
constraint._solver_has_projections = False
for v in constraint.variables():
while isinstance(v, Projection):
v = v.variable()
constraint._solver_has_projections = True
v._constraints.add(constraint)
v._solver = self
#print 'added constraint', constraint
return constraint
@observed
def remove_constraint(self, constraint):
"""
Remove a constraint from the solver
>>> from constraint import EquationConstraint
>>> s = Solver()
>>> a, b = Variable(), Variable(2.0)
>>> c = s.add_constraint(EquationConstraint(lambda a, b: a -b, a=a, b=b))
>>> c
EquationConstraint(<lambda>, a=Variable(0, 20), b=Variable(2, 20))
>>> s.remove_constraint(c)
>>> s._marked_cons
[]
>>> s._constraints
set([])
Removing a constraint twice has no effect:
>>> s.remove_constraint(c)
"""
assert constraint, 'No constraint (%s)' % (constraint,)
for v in constraint.variables():
while isinstance(v, Projection):
v = v.variable()
v._constraints.discard(constraint)
self._constraints.discard(constraint)
while constraint in self._marked_cons:
self._marked_cons.remove(constraint)
reversible_pair(add_constraint, remove_constraint)
def request_resolve_constraint(self, c):
"""
Request resolving a constraint.
"""
self._marked_cons.append(c)
def constraints_with_variable(self, *variables):
"""
Return an iterator of constraints that work with variable.
The variable in question should be exposed by the constraints
`constraint.Constraint.variables()` method.
>>> from constraint import EquationConstraint
>>> s = Solver()
>>> a, b, c = Variable(), Variable(2.0), Variable(4.0)
>>> eq_a_b = s.add_constraint(EquationConstraint(lambda a, b: a -b, a=a, b=b))
>>> eq_a_b
EquationConstraint(<lambda>, a=Variable(0, 20), b=Variable(2, 20))
>>> eq_a_c = s.add_constraint(EquationConstraint(lambda a, b: a -b, a=a, b=c))
>>> eq_a_c
EquationConstraint(<lambda>, a=Variable(0, 20), b=Variable(4, 20))
And now for some testing:
>>> eq_a_b in s.constraints_with_variable(a)
True
>>> eq_a_c in s.constraints_with_variable(a)
True
>>> eq_a_b in s.constraints_with_variable(a, b)
True
>>> eq_a_c in s.constraints_with_variable(a, b)
False
Using another variable with the same value does not work:
>>> d = Variable(2.0)
>>> eq_a_b in s.constraints_with_variable(a, d)
False
This also works for projections:
>>> eq_pr_a_b = s.add_constraint(EquationConstraint(lambda a, b: a -b, a=Projection(a), b=Projection(b)))
>>> eq_pr_a_b # doctest: +ELLIPSIS
EquationConstraint(<lambda>, a=Projection(Variable(0, 20)), b=Projection(Variable(2, 20)))
>>> eq_pr_a_b in s.constraints_with_variable(a, b)
True
>>> eq_pr_a_b in s.constraints_with_variable(a, c)
False
>>> eq_pr_a_b in s.constraints_with_variable(a, d)
False
"""
# Use a copy of the original set, so constraints may be
# deleted in the meantime.
variables = set(variables)
for c in set(self._constraints):
if variables.issubset(set(c.variables())):
yield c
elif c._solver_has_projections:
found = True
for v in c.variables():
if v in variables:
continue
while isinstance(v, Projection):
v = v.variable()
if v in variables:
break
else:
found = False
if not found:
break # quit for loop, variable not in constraint
else:
# All iteration have completed succesfully,
# so all variables are in the constraint
yield c
def solve(self):
"""
Example:
>>> from constraint import EquationConstraint
>>> a, b, c = Variable(1.0), Variable(2.0), Variable(3.0)
>>> s = Solver()
>>> s.add_constraint(EquationConstraint(lambda a,b: a+b, a=a, b=b))
EquationConstraint(<lambda>, a=Variable(1, 20), b=Variable(2, 20))
>>> a.value = 5.0
>>> s.solve()
>>> len(s._marked_cons)
0
>>> b._value
-5.0
>>> s.add_constraint(EquationConstraint(lambda a,b: a+b, a=b, b=c))
EquationConstraint(<lambda>, a=Variable(-5, 20), b=Variable(3, 20))
>>> len(s._constraints)
2
>>> len(s._marked_cons)
1
>>> b._value
-5.0
>>> s.solve()
>>> b._value
-3.0
>>> a.value = 10
>>> s.solve()
>>> c._value
10.0
"""
marked_cons = self._marked_cons
try:
self._solving = True
# Solve each constraint. Using a counter makes it
# possible to also solve constraints that are marked as
# a result of other variabled being solved.
n = 0
while n < len(marked_cons):
c = marked_cons[n]
if not c.disabled:
wvar = c.weakest()
c.solve_for(wvar)
n += 1
self._marked_cons = []
finally:
self._solving = False
class solvable(object):
"""
Easy-to-use drop Variable descriptor.
>>> class A(object):
... x = solvable(varname='_v_x')
... y = solvable(STRONG)
... def __init__(self):
... self.x = 12
>>> a = A()
>>> a.x
Variable(12, 20)
>>> a._v_x
Variable(12, 20)
>>> a.x = 3
>>> a.x
Variable(3, 20)
>>> a.y
Variable(0, 30)
"""
def __init__(self, strength=NORMAL, varname=None):
self._strength = strength
self._varname = varname or '_variable_%x' % id(self)
def __get__(self, obj, class_=None):
if not obj:
return self
try:
return getattr(obj, self._varname)
except AttributeError:
setattr(obj, self._varname, Variable(strength=self._strength))
return getattr(obj, self._varname)
def __set__(self, obj, value):
try:
getattr(obj, self._varname).value = float(value)
except AttributeError:
v = Variable(strength=self._strength)
setattr(obj, self._varname, v)
v.value = value
class JuggleError(AssertionError):
"""
Variable juggling exception. Raised when constraint's variables are
marking each other dirty forever.
"""
__test__ = {
'Solver.add_constraint': Solver.add_constraint,
'Solver.remove_constraint': Solver.remove_constraint,
}
# vim:sw=4:et:ai
|