/usr/lib/python2.7/dist-packages/geopy/distance.py is in python-geopy 1.3.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 | """
.. versionadded:: 0.93
Geopy can calculate geodesic distance between two points using the
[Vincenty distance](https://en.wikipedia.org/wiki/Vincenty's_formulae) or
[great-circle distance](https://en.wikipedia.org/wiki/Great-circle_distance)
formulas, with a default of Vincenty available as the function
`geopy.distance.distance`.
Great-circle distance (:class:`.great_circle`) uses a spherical model of
the earth, using the average great-circle radius of 6372.795 kilometers,
resulting in an error of up to about 0.5%. The radius value is stored in
:const:`distance.EARTH_RADIUS`, so it can be customized
(it should always be in kilometers, however).
Vincenty distance (:class:`.vincenty`) uses a more accurate ellipsoidal model
of the earth. This is the default distance formula, and is thus aliased as
``distance.distance``. There are multiple popular ellipsoidal models, and
which one will be the most accurate depends on where your points are located
on the earth. The default is the WGS-84 ellipsoid, which is the most globally
accurate. geopy includes a few other
models in the distance.ELLIPSOIDS dictionary::
model major (km) minor (km) flattening
ELLIPSOIDS = {'WGS-84': (6378.137, 6356.7523142, 1 / 298.257223563),
'GRS-80': (6378.137, 6356.7523141, 1 / 298.257222101),
'Airy (1830)': (6377.563396, 6356.256909, 1 / 299.3249646),
'Intl 1924': (6378.388, 6356.911946, 1 / 297.0),
'Clarke (1880)': (6378.249145, 6356.51486955, 1 / 293.465),
'GRS-67': (6378.1600, 6356.774719, 1 / 298.25),
}
Here's an example usage of distance.vincenty::
>>> from geopy.distance import vincenty
>>> newport_ri = (41.49008, -71.312796)
>>> cleveland_oh = (41.499498, -81.695391)
>>> vincenty(newport_ri, cleveland_oh).miles
538.3904451566326
Using great-circle distance::
>>> from geopy.distance import great_circle
>>> newport_ri = (41.49008, -71.312796)
>>> cleveland_oh = (41.499498, -81.695391)
>>> great_circle(newport_ri, cleveland_oh).miles
537.1485284062816
You can change the ellipsoid model used by the Vincenty formula like so::
>>> distance.vincenty(ne, cl, ellipsoid='GRS-80').miles
The above model name will automatically be retrieved from the ELLIPSOIDS dictionary.
Alternatively, you can specify the model values directly::
>>> distance.vincenty(ne, cl, ellipsoid=(6377., 6356., 1 / 297.)).miles
Distances support simple arithmetic, making it easy to do things like
calculate the length of a path::
>>> d = distance.distance
>>> _, wa = g.geocode('Washington, DC')
>>> _, pa = g.geocode('Palo Alto, CA')
>>> (d(ne, cl) + d(cl, wa) + d(wa, pa)).miles
3276.157156868931
"""
from __future__ import division
from math import atan, tan, sin, cos, pi, sqrt, atan2, asin
from geopy.units import radians
from geopy import units, util
from geopy.point import Point
from geopy.compat import string_compare
# Average great-circle radius in kilometers, from Wikipedia.
# Using a sphere with this radius results in an error of up to about 0.5%.
EARTH_RADIUS = 6372.795
# From http://www.movable-type.co.uk/scripts/LatLongVincenty.html:
# The most accurate and widely used globally-applicable model for the earth
# ellipsoid is WGS-84, used in this script. Other ellipsoids offering a
# better fit to the local geoid include Airy (1830) in the UK, International
# 1924 in much of Europe, Clarke (1880) in Africa, and GRS-67 in South
# America. America (NAD83) and Australia (GDA) use GRS-80, functionally
# equivalent to the WGS-84 ellipsoid.
ELLIPSOIDS = {
# model major (km) minor (km) flattening
'WGS-84': (6378.137, 6356.7523142, 1 / 298.257223563),
'GRS-80': (6378.137, 6356.7523141, 1 / 298.257222101),
'Airy (1830)': (6377.563396, 6356.256909, 1 / 299.3249646),
'Intl 1924': (6378.388, 6356.911946, 1 / 297.0),
'Clarke (1880)': (6378.249145, 6356.51486955, 1 / 293.465),
'GRS-67': (6378.1600, 6356.774719, 1 / 298.25)
}
class Distance(object):
"""
Base for :class:`.great_circle` and :class:`.vincenty`.
"""
def __init__(self, *args, **kwargs):
kilometers = kwargs.pop('kilometers', 0)
if len(args) == 1:
# if we only get one argument we assume
# it's a known distance instead of
# calculating it first
kilometers += args[0]
elif len(args) > 1:
for a, b in util.pairwise(args):
kilometers += self.measure(a, b)
kilometers += units.kilometers(**kwargs)
self.__kilometers = kilometers
def __add__(self, other):
if isinstance(other, Distance):
return self.__class__(self.kilometers + other.kilometers)
else:
raise TypeError(
"Distance instance must be added with Distance instance."
)
def __neg__(self):
return self.__class__(-self.kilometers)
def __sub__(self, other):
return self + -other
def __mul__(self, other):
return self.__class__(self.kilometers * other)
def __div__(self, other):
if isinstance(other, Distance):
return self.kilometers / other.kilometers
else:
return self.__class__(self.kilometers / other)
__truediv__ = __div__
def __abs__(self):
return self.__class__(abs(self.kilometers))
def __nonzero__(self):
return bool(self.kilometers)
__bool__ = __nonzero__
def measure(self, a, b):
raise NotImplementedError()
def __repr__(self): # pragma: no cover
return 'Distance(%s)' % self.kilometers
def __str__(self): # pragma: no cover
return '%s km' % self.__kilometers
def __lt__(self, other):
if isinstance(other, Distance):
return self.kilometers < other.kilometers
else:
return self.kilometers < other
def __eq__(self, other):
if isinstance(other, Distance):
return self.kilometers == other.kilometers
else:
return self.kilometers == other
@property
def kilometers(self): # pylint: disable=C0111
return self.__kilometers
@property
def km(self): # pylint: disable=C0111
return self.kilometers
@property
def meters(self): # pylint: disable=C0111
return units.meters(kilometers=self.kilometers)
@property
def m(self): # pylint: disable=C0111
return self.meters
@property
def miles(self): # pylint: disable=C0111
return units.miles(kilometers=self.kilometers)
@property
def mi(self): # pylint: disable=C0111
return self.miles
@property
def feet(self): # pylint: disable=C0111
return units.feet(kilometers=self.kilometers)
@property
def ft(self): # pylint: disable=C0111
return self.feet
@property
def nautical(self): # pylint: disable=C0111
return units.nautical(kilometers=self.kilometers)
@property
def nm(self): # pylint: disable=C0111
return self.nautical
class great_circle(Distance):
"""
Use spherical geometry to calculate the surface distance between two
geodesic points. This formula can be written many different ways,
including just the use of the spherical law of cosines or the haversine
formula.
Set which radius of the earth to use by specifying a 'radius' keyword
argument. It must be in kilometers. The default is to use the module
constant `EARTH_RADIUS`, which uses the average great-circle radius.
Example::
>>> from geopy.distance import great_circle
>>> newport_ri = (41.49008, -71.312796)
>>> cleveland_oh = (41.499498, -81.695391)
>>> great_circle(newport_ri, cleveland_oh).miles
537.1485284062816
"""
def __init__(self, *args, **kwargs):
self.RADIUS = kwargs.pop('radius', EARTH_RADIUS)
super(great_circle, self).__init__(*args, **kwargs)
def measure(self, a, b):
a, b = Point(a), Point(b)
lat1, lng1 = radians(degrees=a.latitude), radians(degrees=a.longitude)
lat2, lng2 = radians(degrees=b.latitude), radians(degrees=b.longitude)
sin_lat1, cos_lat1 = sin(lat1), cos(lat1)
sin_lat2, cos_lat2 = sin(lat2), cos(lat2)
delta_lng = lng2 - lng1
cos_delta_lng, sin_delta_lng = cos(delta_lng), sin(delta_lng)
d = atan2(sqrt((cos_lat2 * sin_delta_lng) ** 2 +
(cos_lat1 * sin_lat2 -
sin_lat1 * cos_lat2 * cos_delta_lng) ** 2),
sin_lat1 * sin_lat2 + cos_lat1 * cos_lat2 * cos_delta_lng)
return self.RADIUS * d
def destination(self, point, bearing, distance=None): # pylint: disable=W0621
"""
TODO docs.
"""
point = Point(point)
lat1 = units.radians(degrees=point.latitude)
lng1 = units.radians(degrees=point.longitude)
bearing = units.radians(degrees=bearing)
if distance is None:
distance = self
if isinstance(distance, Distance):
distance = distance.kilometers
d_div_r = float(distance) / self.RADIUS
lat2 = asin(
sin(lat1) * cos(d_div_r) +
cos(lat1) * sin(d_div_r) * cos(bearing)
)
lng2 = lng1 + atan2(
sin(bearing) * sin(d_div_r) * cos(lat1),
cos(d_div_r) - sin(lat1) * sin(lat2)
)
return Point(units.degrees(radians=lat2), units.degrees(radians=lng2))
class vincenty(Distance):
"""
Calculate the geodesic distance between two points using the formula
devised by Thaddeus Vincenty, with an accurate ellipsoidal model of the
earth.
Set which ellipsoidal model of the earth to use by specifying an
``ellipsoid`` keyword argument. The default is 'WGS-84', which is the
most globally accurate model. If ``ellipsoid`` is a string, it is
looked up in the `ELLIPSOIDS` dictionary to obtain the major and minor
semiaxes and the flattening. Otherwise, it should be a tuple with those
values. See the comments above the `ELLIPSOIDS` dictionary for
more information.
Example::
>>> from geopy.distance import vincenty
>>> newport_ri = (41.49008, -71.312796)
>>> cleveland_oh = (41.499498, -81.695391)
>>> vincenty(newport_ri, cleveland_oh).miles
538.3904451566326
Note: This implementation of Vincenty distance fails to converge for
some valid points. In some cases, a result can be obtained by increasing
the number of iterations (`iterations` keyword argument, given in the
class `__init__`, with a default of 20). It may be preferable to use
:class:`.great_circle`, which is marginally less accurate, but always
produces a result.
"""
ellipsoid_key = None
ELLIPSOID = None
def __init__(self, *args, **kwargs):
self.set_ellipsoid(kwargs.pop('ellipsoid', 'WGS-84'))
self.iterations = kwargs.pop('iterations', 20)
major, minor, f = self.ELLIPSOID # pylint: disable=W0612
super(vincenty, self).__init__(*args, **kwargs)
def set_ellipsoid(self, ellipsoid):
"""
Change the ellipsoid used in the calculation.
"""
if not isinstance(ellipsoid, (list, tuple)):
try:
self.ELLIPSOID = ELLIPSOIDS[ellipsoid]
self.ellipsoid_key = ellipsoid
except KeyError:
raise Exception(
"Invalid ellipsoid. See geopy.distance.ELIPSOIDS"
)
else:
self.ELLIPSOID = ellipsoid
self.ellipsoid_key = None
return
def measure(self, a, b):
a, b = Point(a), Point(b)
lat1, lng1 = radians(degrees=a.latitude), radians(degrees=a.longitude)
lat2, lng2 = radians(degrees=b.latitude), radians(degrees=b.longitude)
if isinstance(self.ELLIPSOID, string_compare):
major, minor, f = ELLIPSOIDS[self.ELLIPSOID]
else:
major, minor, f = self.ELLIPSOID
delta_lng = lng2 - lng1
reduced_lat1 = atan((1 - f) * tan(lat1))
reduced_lat2 = atan((1 - f) * tan(lat2))
sin_reduced1, cos_reduced1 = sin(reduced_lat1), cos(reduced_lat1)
sin_reduced2, cos_reduced2 = sin(reduced_lat2), cos(reduced_lat2)
lambda_lng = delta_lng
lambda_prime = 2 * pi
iter_limit = self.iterations
i = 0
while abs(lambda_lng - lambda_prime) > 10e-12 and i <= iter_limit:
i += 1
sin_lambda_lng, cos_lambda_lng = sin(lambda_lng), cos(lambda_lng)
sin_sigma = sqrt(
(cos_reduced2 * sin_lambda_lng) ** 2 +
(cos_reduced1 * sin_reduced2 -
sin_reduced1 * cos_reduced2 * cos_lambda_lng) ** 2
)
if sin_sigma == 0:
return 0 # Coincident points
cos_sigma = (
sin_reduced1 * sin_reduced2 +
cos_reduced1 * cos_reduced2 * cos_lambda_lng
)
sigma = atan2(sin_sigma, cos_sigma)
sin_alpha = (
cos_reduced1 * cos_reduced2 * sin_lambda_lng / sin_sigma
)
cos_sq_alpha = 1 - sin_alpha ** 2
if cos_sq_alpha != 0:
cos2_sigma_m = cos_sigma - 2 * (
sin_reduced1 * sin_reduced2 / cos_sq_alpha
)
else:
cos2_sigma_m = 0.0 # Equatorial line
C = f / 16. * cos_sq_alpha * (4 + f * (4 - 3 * cos_sq_alpha))
lambda_prime = lambda_lng
lambda_lng = (
delta_lng + (1 - C) * f * sin_alpha * (
sigma + C * sin_sigma * (
cos2_sigma_m + C * cos_sigma * (
-1 + 2 * cos2_sigma_m ** 2
)
)
)
)
if i > iter_limit:
raise ValueError("Vincenty formula failed to converge!")
u_sq = cos_sq_alpha * (major ** 2 - minor ** 2) / minor ** 2
A = 1 + u_sq / 16384. * (
4096 + u_sq * (-768 + u_sq * (320 - 175 * u_sq))
)
B = u_sq / 1024. * (256 + u_sq * (-128 + u_sq * (74 - 47 * u_sq)))
delta_sigma = (
B * sin_sigma * (
cos2_sigma_m + B / 4. * (
cos_sigma * (
-1 + 2 * cos2_sigma_m ** 2
) - B / 6. * cos2_sigma_m * (
-3 + 4 * sin_sigma ** 2
) * (
-3 + 4 * cos2_sigma_m ** 2
)
)
)
)
s = minor * A * (sigma - delta_sigma)
return s
def destination(self, point, bearing, distance=None): # pylint: disable=W0621
"""
TODO docs.
"""
point = Point(point)
lat1 = units.radians(degrees=point.latitude)
lng1 = units.radians(degrees=point.longitude)
bearing = units.radians(degrees=bearing)
if distance is None:
distance = self
if isinstance(distance, Distance):
distance = distance.kilometers
ellipsoid = self.ELLIPSOID
if isinstance(ellipsoid, string_compare):
ellipsoid = ELLIPSOIDS[ellipsoid]
major, minor, f = ellipsoid
tan_reduced1 = (1 - f) * tan(lat1)
cos_reduced1 = 1 / sqrt(1 + tan_reduced1 ** 2)
sin_reduced1 = tan_reduced1 * cos_reduced1
sin_bearing, cos_bearing = sin(bearing), cos(bearing)
sigma1 = atan2(tan_reduced1, cos_bearing)
sin_alpha = cos_reduced1 * sin_bearing
cos_sq_alpha = 1 - sin_alpha ** 2
u_sq = cos_sq_alpha * (major ** 2 - minor ** 2) / minor ** 2
A = 1 + u_sq / 16384. * (
4096 + u_sq * (-768 + u_sq * (320 - 175 * u_sq))
)
B = u_sq / 1024. * (256 + u_sq * (-128 + u_sq * (74 - 47 * u_sq)))
sigma = distance / (minor * A)
sigma_prime = 2 * pi
while abs(sigma - sigma_prime) > 10e-12:
cos2_sigma_m = cos(2 * sigma1 + sigma)
sin_sigma, cos_sigma = sin(sigma), cos(sigma)
delta_sigma = B * sin_sigma * (
cos2_sigma_m + B / 4. * (
cos_sigma * (
-1 + 2 * cos2_sigma_m
) - B / 6. * cos2_sigma_m * (
-3 + 4 * sin_sigma ** 2) * (
-3 + 4 * cos2_sigma_m ** 2
)
)
)
sigma_prime = sigma
sigma = distance / (minor * A) + delta_sigma
sin_sigma, cos_sigma = sin(sigma), cos(sigma)
lat2 = atan2(
sin_reduced1 * cos_sigma + cos_reduced1 * sin_sigma * cos_bearing,
(1 - f) * sqrt(
sin_alpha ** 2 + (
sin_reduced1 * sin_sigma -
cos_reduced1 * cos_sigma * cos_bearing
) ** 2
)
)
lambda_lng = atan2(
sin_sigma * sin_bearing,
cos_reduced1 * cos_sigma - sin_reduced1 * sin_sigma * cos_bearing
)
C = f / 16. * cos_sq_alpha * (4 + f * (4 - 3 * cos_sq_alpha))
delta_lng = (
lambda_lng - (1 - C) * f * sin_alpha * (
sigma + C * sin_sigma * (
cos2_sigma_m + C * cos_sigma * (
-1 + 2 * cos2_sigma_m ** 2
)
)
)
)
lng2 = lng1 + delta_lng
return Point(units.degrees(radians=lat2), units.degrees(radians=lng2))
# Set the default distance formula to the most generally accurate.
distance = VincentyDistance = vincenty
GreatCircleDistance = great_circle
|