/usr/share/pyshared/happybase/table.py is in python-happybase 0.8-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 | """
HappyBase table module.
"""
import logging
from numbers import Integral
from operator import attrgetter
from struct import Struct
from .hbase.ttypes import TScan
from .util import thrift_type_to_dict, str_increment, OrderedDict
from .batch import Batch
logger = logging.getLogger(__name__)
make_cell = attrgetter('value')
make_cell_timestamp = attrgetter('value', 'timestamp')
pack_i64 = Struct('>q').pack
def make_row(cell_map, include_timestamp):
"""Make a row dict for a cell mapping like ttypes.TRowResult.columns."""
cellfn = include_timestamp and make_cell_timestamp or make_cell
return dict((cn, cellfn(cell)) for cn, cell in cell_map.iteritems())
def make_ordered_row(sorted_columns, include_timestamp):
"""Make a row dict for sorted column results from scans."""
cellfn = include_timestamp and make_cell_timestamp or make_cell
return OrderedDict(
(column.columnName, cellfn(column.cell))
for column in sorted_columns)
class Table(object):
"""HBase table abstraction class.
This class cannot be instantiated directly; use :py:meth:`Connection.table`
instead.
"""
def __init__(self, name, connection):
self.name = name
self.connection = connection
def __repr__(self):
return '<%s.%s name=%r>' % (
__name__,
self.__class__.__name__,
self.name,
)
def families(self):
"""Retrieve the column families for this table.
:return: Mapping from column family name to settings dict
:rtype: dict
"""
descriptors = self.connection.client.getColumnDescriptors(self.name)
families = dict()
for name, descriptor in descriptors.items():
name = name.rstrip(':')
families[name] = thrift_type_to_dict(descriptor)
return families
def _column_family_names(self):
"""Retrieve the column family names for this table (internal use)"""
names = self.connection.client.getColumnDescriptors(self.name).keys()
return [name.rstrip(':') for name in names]
def regions(self):
"""Retrieve the regions for this table.
:return: regions for this table
:rtype: list of dicts
"""
regions = self.connection.client.getTableRegions(self.name)
return map(thrift_type_to_dict, regions)
#
# Data retrieval
#
def row(self, row, columns=None, timestamp=None, include_timestamp=False):
"""Retrieve a single row of data.
This method retrieves the row with the row key specified in the `row`
argument and returns the columns and values for this row as
a dictionary.
The `row` argument is the row key of the row. If the `columns` argument
is specified, only the values for these columns will be returned
instead of all available columns. The `columns` argument should be
a list or tuple containing strings. Each name can be a column family,
such as `cf1` or `cf1:` (the trailing colon is not required), or
a column family with a qualifier, such as `cf1:col1`.
If specified, the `timestamp` argument specifies the maximum version
that results may have. The `include_timestamp` argument specifies
whether cells are returned as single values or as `(value, timestamp)`
tuples.
:param str row: the row key
:param list_or_tuple columns: list of columns (optional)
:param int timestamp: timestamp (optional)
:param bool include_timestamp: whether timestamps are returned
:return: Mapping of columns (both qualifier and family) to values
:rtype: dict
"""
if columns is not None and not isinstance(columns, (tuple, list)):
raise TypeError("'columns' must be a tuple or list")
if timestamp is None:
rows = self.connection.client.getRowWithColumns(
self.name, row, columns, {})
else:
if not isinstance(timestamp, Integral):
raise TypeError("'timestamp' must be an integer")
rows = self.connection.client.getRowWithColumnsTs(
self.name, row, columns, timestamp, {})
if not rows:
return {}
return make_row(rows[0].columns, include_timestamp)
def rows(self, rows, columns=None, timestamp=None,
include_timestamp=False):
"""Retrieve multiple rows of data.
This method retrieves the rows with the row keys specified in the
`rows` argument, which should be should be a list (or tuple) of row
keys. The return value is a list of `(row_key, row_dict)` tuples.
The `columns`, `timestamp` and `include_timestamp` arguments behave
exactly the same as for :py:meth:`row`.
:param list rows: list of row keys
:param list_or_tuple columns: list of columns (optional)
:param int timestamp: timestamp (optional)
:param bool include_timestamp: whether timestamps are returned
:return: List of mappings (columns to values)
:rtype: list of dicts
"""
if columns is not None and not isinstance(columns, (tuple, list)):
raise TypeError("'columns' must be a tuple or list")
if not rows:
# Avoid round-trip if the result is empty anyway
return {}
if timestamp is None:
results = self.connection.client.getRowsWithColumns(
self.name, rows, columns, {})
else:
if not isinstance(timestamp, Integral):
raise TypeError("'timestamp' must be an integer")
# Work-around a bug in the HBase Thrift server where the
# timestamp is only applied if columns are specified, at
# the cost of an extra round-trip.
if columns is None:
columns = self._column_family_names()
results = self.connection.client.getRowsWithColumnsTs(
self.name, rows, columns, timestamp, {})
return [(r.row, make_row(r.columns, include_timestamp))
for r in results]
def cells(self, row, column, versions=None, timestamp=None,
include_timestamp=False):
"""Retrieve multiple versions of a single cell from the table.
This method retrieves multiple versions of a cell (if any).
The `versions` argument defines how many cell versions to
retrieve at most.
The `timestamp` and `include_timestamp` arguments behave exactly the
same as for :py:meth:`row`.
:param str row: the row key
:param str column: the column name
:param int versions: the maximum number of versions to retrieve
:param int timestamp: timestamp (optional)
:param bool include_timestamp: whether timestamps are returned
:return: cell values
:rtype: list of values
"""
if versions is None:
versions = (2 ** 31) - 1 # Thrift type is i32
elif not isinstance(versions, int):
raise TypeError("'versions' argument must be a number or None")
elif versions < 1:
raise ValueError(
"'versions' argument must be at least 1 (or None)")
if timestamp is None:
cells = self.connection.client.getVer(
self.name, row, column, versions, {})
else:
if not isinstance(timestamp, Integral):
raise TypeError("'timestamp' must be an integer")
cells = self.connection.client.getVerTs(
self.name, row, column, timestamp, versions, {})
if include_timestamp:
return map(make_cell_timestamp, cells)
else:
return map(make_cell, cells)
def scan(self, row_start=None, row_stop=None, row_prefix=None,
columns=None, filter=None, timestamp=None,
include_timestamp=False, batch_size=1000, scan_batching=None,
limit=None, sorted_columns=False):
"""Create a scanner for data in the table.
This method returns an iterable that can be used for looping over the
matching rows. Scanners can be created in two ways:
* The `row_start` and `row_stop` arguments specify the row keys where
the scanner should start and stop. It does not matter whether the
table contains any rows with the specified keys: the first row after
`row_start` will be the first result, and the last row before
`row_stop` will be the last result. Note that the start of the range
is inclusive, while the end is exclusive.
Both `row_start` and `row_stop` can be `None` to specify the start
and the end of the table respectively. If both are omitted, a full
table scan is done. Note that this usually results in severe
performance problems.
* Alternatively, if `row_prefix` is specified, only rows with row keys
matching the prefix will be returned. If given, `row_start` and
`row_stop` cannot be used.
The `columns`, `timestamp` and `include_timestamp` arguments behave
exactly the same as for :py:meth:`row`.
The `filter` argument may be a filter string that will be applied at
the server by the region servers.
If `limit` is given, at most `limit` results will be returned.
The `batch_size` argument specifies how many results should be
retrieved per batch when retrieving results from the scanner. Only set
this to a low value (or even 1) if your data is large, since a low
batch size results in added round-trips to the server.
The optional `scan_batching` is for advanced usage only; it
translates to `Scan.setBatching()` at the Java side (inside the
Thrift server). By setting this value rows may be split into
partial rows, so result rows may be incomplete, and the number
of results returned by te scanner may no longer correspond to
the number of rows matched by the scan.
If `sorted_columns` is `True`, the columns in the rows returned
by this scanner will be retrieved in sorted order, and the data
will be stored in `OrderedDict` instances.
**Compatibility notes:**
* The `filter` argument is only available when using HBase 0.92
(or up). In HBase 0.90 compatibility mode, specifying
a `filter` raises an exception.
* The `sorted_columns` argument is only available when using
HBase 0.96 (or up).
.. versionadded:: 0.8
`sorted_columns` argument
:param str row_start: the row key to start at (inclusive)
:param str row_stop: the row key to stop at (exclusive)
:param str row_prefix: a prefix of the row key that must match
:param list_or_tuple columns: list of columns (optional)
:param str filter: a filter string (optional)
:param int timestamp: timestamp (optional)
:param bool include_timestamp: whether timestamps are returned
:param int batch_size: batch size for retrieving resuls
:param bool scan_batching: server-side scan batching (optional)
:param int limit: max number of rows to return
:param bool sorted_columns: whether to return sorted columns
:return: generator yielding the rows matching the scan
:rtype: iterable of `(row_key, row_data)` tuples
"""
if batch_size < 1:
raise ValueError("'batch_size' must be >= 1")
if limit is not None and limit < 1:
raise ValueError("'limit' must be >= 1")
if sorted_columns and self.connection.compat < '0.96':
raise NotImplementedError(
"'sorted_columns' is not supported in HBase >= 0.96")
if row_prefix is not None:
if row_start is not None or row_stop is not None:
raise TypeError(
"'row_prefix' cannot be combined with 'row_start' "
"or 'row_stop'")
row_start = row_prefix
row_stop = str_increment(row_prefix)
if row_start is None:
row_start = ''
if self.connection.compat == '0.90':
# The scannerOpenWithScan() Thrift function is not
# available, so work around it as much as possible with the
# other scannerOpen*() Thrift functions
if filter is not None:
raise NotImplementedError(
"'filter' is not supported in HBase 0.90")
if row_stop is None:
if timestamp is None:
scan_id = self.connection.client.scannerOpen(
self.name, row_start, columns, {})
else:
scan_id = self.connection.client.scannerOpenTs(
self.name, row_start, columns, timestamp, {})
else:
if timestamp is None:
scan_id = self.connection.client.scannerOpenWithStop(
self.name, row_start, row_stop, columns, {})
else:
scan_id = self.connection.client.scannerOpenWithStopTs(
self.name, row_start, row_stop, columns, timestamp, {})
else:
# XXX: The "batch_size" can be slightly confusing to those
# familiar with the HBase Java API:
#
# * TScan.caching (Thrift API) translates to
# Scan.setCaching() (Java API)
#
# * TScan.batchSize (Thrift API) translates to
# Scan.setBatching (Java API) .
#
# However, we set Scan.setCaching() to what is called
# batch_size in the HappyBase API, so that the HTable on the
# Java side (inside the Thrift server) retrieves rows from
# the region servers in the same chunk sizes that it sends
# out again to Python (over Thrift). This cannot be tweaked
# (by design).
#
# The Scan.setBatching() value (Java API), which possibly
# cuts rows into multiple partial rows, can be set using the
# slightly strange name scan_batching.
scan = TScan(
startRow=row_start,
stopRow=row_stop,
timestamp=timestamp,
columns=columns,
caching=batch_size,
filterString=filter,
batchSize=scan_batching,
sortColumns=sorted_columns,
)
scan_id = self.connection.client.scannerOpenWithScan(
self.name, scan, {})
logger.debug("Opened scanner (id=%d) on '%s'", scan_id, self.name)
n_returned = n_fetched = 0
try:
while True:
if limit is None:
how_many = batch_size
else:
how_many = min(batch_size, limit - n_returned)
if how_many == 1:
items = self.connection.client.scannerGet(scan_id)
else:
items = self.connection.client.scannerGetList(
scan_id, how_many)
n_fetched += len(items)
for n_returned, item in enumerate(items, n_returned + 1):
if sorted_columns:
row = make_ordered_row(item.sortedColumns,
include_timestamp)
else:
row = make_row(item.columns, include_timestamp)
yield item.row, row
if limit is not None and n_returned == limit:
return
# Avoid round-trip when exhausted
if len(items) < how_many:
break
finally:
self.connection.client.scannerClose(scan_id)
logger.debug(
"Closed scanner (id=%d) on '%s' (%d returned, %d fetched)",
scan_id, self.name, n_returned, n_fetched)
#
# Data manipulation
#
def put(self, row, data, timestamp=None, wal=True):
"""Store data in the table.
This method stores the data in the `data` argument for the row
specified by `row`. The `data` argument is dictionary that maps columns
to values. Column names must include a family and qualifier part, e.g.
`cf:col`, though the qualifier part may be the empty string, e.g.
`cf:`.
Note that, in many situations, :py:meth:`batch()` is a more appropriate
method to manipulate data.
.. versionadded:: 0.7
`wal` argument
:param str row: the row key
:param dict data: the data to store
:param int timestamp: timestamp (optional)
:param wal bool: whether to write to the WAL (optional)
"""
with self.batch(timestamp=timestamp, wal=wal) as batch:
batch.put(row, data)
def delete(self, row, columns=None, timestamp=None, wal=True):
"""Delete data from the table.
This method deletes all columns for the row specified by `row`, or only
some columns if the `columns` argument is specified.
Note that, in many situations, :py:meth:`batch()` is a more appropriate
method to manipulate data.
.. versionadded:: 0.7
`wal` argument
:param str row: the row key
:param list_or_tuple columns: list of columns (optional)
:param int timestamp: timestamp (optional)
:param wal bool: whether to write to the WAL (optional)
"""
with self.batch(timestamp=timestamp, wal=wal) as batch:
batch.delete(row, columns)
def batch(self, timestamp=None, batch_size=None, transaction=False,
wal=True):
"""Create a new batch operation for this table.
This method returns a new :py:class:`Batch` instance that can be used
for mass data manipulation. The `timestamp` argument applies to all
puts and deletes on the batch.
If given, the `batch_size` argument specifies the maximum batch size
after which the batch should send the mutations to the server. By
default this is unbounded.
The `transaction` argument specifies whether the returned
:py:class:`Batch` instance should act in a transaction-like manner when
used as context manager in a ``with`` block of code. The `transaction`
flag cannot be used in combination with `batch_size`.
The `wal` argument determines whether mutations should be
written to the HBase Write Ahead Log (WAL). This flag can only
be used with recent HBase versions. If specified, it provides
a default for all the put and delete operations on this batch.
This default value can be overridden for individual operations
using the `wal` argument to :py:meth:`Batch.put` and
:py:meth:`Batch.delete`.
.. versionadded:: 0.7
`wal` argument
:param bool transaction: whether this batch should behave like
a transaction (only useful when used as a
context manager)
:param int batch_size: batch size (optional)
:param int timestamp: timestamp (optional)
:param wal bool: whether to write to the WAL (optional)
:return: Batch instance
:rtype: :py:class:`Batch`
"""
kwargs = locals().copy()
del kwargs['self']
return Batch(table=self, **kwargs)
#
# Atomic counters
#
def counter_get(self, row, column):
"""Retrieve the current value of a counter column.
This method retrieves the current value of a counter column. If the
counter column does not exist, this function initialises it to `0`.
Note that application code should *never* store a incremented or
decremented counter value directly; use the atomic
:py:meth:`Table.counter_inc` and :py:meth:`Table.counter_dec` methods
for that.
:param str row: the row key
:param str column: the column name
:return: counter value
:rtype: int
"""
# Don't query directly, but increment with value=0 so that the counter
# is correctly initialised if didn't exist yet.
return self.counter_inc(row, column, value=0)
def counter_set(self, row, column, value=0):
"""Set a counter column to a specific value.
This method stores a 64-bit signed integer value in the specified
column.
Note that application code should *never* store a incremented or
decremented counter value directly; use the atomic
:py:meth:`Table.counter_inc` and :py:meth:`Table.counter_dec` methods
for that.
:param str row: the row key
:param str column: the column name
:param int value: the counter value to set
"""
self.put(row, {column: pack_i64(value)})
def counter_inc(self, row, column, value=1):
"""Atomically increment (or decrements) a counter column.
This method atomically increments or decrements a counter column in the
row specified by `row`. The `value` argument specifies how much the
counter should be incremented (for positive values) or decremented (for
negative values). If the counter column did not exist, it is
automatically initialised to 0 before incrementing it.
:param str row: the row key
:param str column: the column name
:param int value: the amount to increment or decrement by (optional)
:return: counter value after incrementing
:rtype: int
"""
return self.connection.client.atomicIncrement(
self.name, row, column, value)
def counter_dec(self, row, column, value=1):
"""Atomically decrement (or increments) a counter column.
This method is a shortcut for calling :py:meth:`Table.counter_inc` with
the value negated.
:return: counter value after decrementing
:rtype: int
"""
return self.counter_inc(row, column, -value)
|