/usr/lib/python2.7/dist-packages/jmespath/ast.py is in python-jmespath 0.4.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 | import operator
import math
import json
from jmespath.compat import with_repr_method
from jmespath.compat import string_type as STRING_TYPE
from jmespath.compat import zip_longest
from jmespath.exceptions import JMESPathTypeError, UnknownFunctionError
NUMBER_TYPE = (float, int)
_VARIADIC = object()
# python types -> jmespath types
TYPES_MAP = {
'bool': 'boolean',
'list': 'array',
'dict': 'object',
'NoneType': 'null',
'unicode': 'string',
'str': 'string',
'float': 'number',
'int': 'number',
'OrderedDict': 'object',
'_Projection': 'array',
'_Expression': 'expref',
}
# jmespath types -> python types
REVERSE_TYPES_MAP = {
'boolean': ('bool',),
'array': ('list', '_Projection'),
'object': ('dict', 'OrderedDict',),
'null': ('None',),
'string': ('unicode', 'str'),
'number': ('float', 'int'),
'expref': ('_Expression',),
}
class _Arg(object):
__slots__ = ('types',)
def __init__(self, types=None):
self.types = types
@with_repr_method
class AST(object):
def __init__(self):
self.children = []
def search(self, value):
pass
def pretty_print(self, indent=''):
return super(AST, self).__repr__()
def __repr__(self):
return self.pretty_print()
class Identity(AST):
def search(self, value):
return value
def pretty_print(self, indent=''):
return "%sIdentity()" % indent
class SubExpression(AST):
"""Represents a subexpression match.
A subexpression match has a parent and a child node. A simple example
would be something like 'foo.bar' which is represented as::
SubExpression(Field(foo), Field(bar))
"""
def __init__(self, parent, child):
self.children = [parent, child]
def search(self, value):
# To evaluate a subexpression we first evaluate the parent object
# and then feed the match of the parent node into the child node.
sub_value = self.children[0].search(value)
found = self.children[1].search(sub_value)
return found
def pretty_print(self, indent=''):
sub_indent = indent + ' ' * 4
return "%s%s(\n%s%s,\n%s%s)" % (
indent, self.__class__.__name__,
sub_indent, self.children[0].pretty_print(sub_indent),
sub_indent, self.children[1].pretty_print(sub_indent))
# This is used just to differentiate between
# subexpressions and indexexpressions (wildcards can hang
# off of an indexexpression).
class IndexExpression(SubExpression):
pass
class Field(AST):
def __init__(self, name):
self.name = name
self.children = []
def pretty_print(self, indent=''):
return "%sField(%s)" % (indent, self.name)
def search(self, value):
if value is not None:
try:
return value.get(self.name)
except AttributeError:
return None
class BaseMultiField(AST):
def __init__(self, nodes):
self.children = list(nodes)
def search(self, value):
if value is None:
return None
return self._multi_get(value)
def _multi_get(self, value):
# Subclasses must define this method.
raise NotImplementedError("_multi_get")
def pretty_print(self, indent=''):
return "%s%s(%s)" % (indent, self.__class__.__name__, self.children)
class MultiFieldDict(BaseMultiField):
def _multi_get(self, value):
collected = {}
for node in self.children:
collected[node.key_name] = node.search(value)
return collected
class MultiFieldList(BaseMultiField):
def _multi_get(self, value):
collected = []
for node in self.children:
collected.append(node.search(value))
return collected
class KeyValPair(AST):
def __init__(self, key_name, node):
self.key_name = key_name
self.children = [node]
def search(self, value):
return self.children[0].search(value)
def pretty_print(self, indent=''):
return "%sKeyValPair(key_name=%s, node=%s)" % (
indent, self.key_name, self.children[0])
class Index(AST):
def __init__(self, index):
super(Index, self).__init__()
self.index = index
def pretty_print(self, indent=''):
return "%sIndex(%s)" % (indent, self.index)
def search(self, value):
# Even though we can index strings, we don't
# want to support that.
if not isinstance(value, list):
return None
try:
return value[self.index]
except IndexError:
return None
class ORExpression(AST):
def __init__(self, first, remaining):
self.children = [first, remaining]
def search(self, value):
matched = self.children[0].search(value)
if self._is_false(matched):
matched = self.children[1].search(value)
return matched
def _is_false(self, value):
# This looks weird, but we're explicitly using equality checks
# because the truth/false values are different between
# python and jmespath.
return (value == '' or value == [] or value == {} or value is None or
value == False)
def pretty_print(self, indent=''):
return "%sORExpression(%s, %s)" % (indent, self.children[0],
self.children[1])
class FilterExpression(AST):
def __init__(self, expression):
self.children = [expression]
def search(self, value):
if not isinstance(value, list):
return None
result = []
for element in value:
if self.children[0].search(element):
result.append(element)
return result
def pretty_print(self, indent=''):
return '%sFilterExpression(%s)' % (indent, self.children[0])
class Literal(AST):
def __init__(self, literal_value):
super(Literal, self).__init__()
self.literal_value = literal_value
def search(self, value):
return self.literal_value
def pretty_print(self, indent=''):
return '%sLiteral(%s)' % (indent, self.literal_value)
class Comparator(AST):
# Subclasses must define the operation function.
operation = None
def __init__(self, first, second):
self.children = [first, second]
def search(self, data):
return self.operation(self.children[0].search(data),
self.children[1].search(data))
def pretty_print(self, indent=''):
return '%s%s(%s, %s)' % (indent, self.__class__.__name__,
self.children[0], self.children[1])
class OPEquals(Comparator):
def _equals(self, first, second):
if self._is_special_integer_case(first, second):
return False
else:
return first == second
def _is_special_integer_case(self, first, second):
# We need to special case comparing 0 or 1 to
# True/False. While normally comparing any
# integer other than 0/1 to True/False will always
# return False. However 0/1 have this:
# >>> 0 == True
# False
# >>> 0 == False
# True
# >>> 1 == True
# True
# >>> 1 == False
# False
#
# Also need to consider that:
# >>> 0 in [True, False]
# True
if first is 0 or first is 1:
return second is True or second is False
elif second is 0 or second is 1:
return first is True or first is False
operation = _equals
class OPNotEquals(OPEquals):
def _not_equals(self, first, second):
return not super(OPNotEquals, self)._equals(first, second)
operation = _not_equals
class OPLessThan(Comparator):
operation = operator.lt
class OPLessThanEquals(Comparator):
operation = operator.le
class OPGreaterThan(Comparator):
operation = operator.gt
class OPGreaterThanEquals(Comparator):
operation = operator.ge
class CurrentNode(AST):
def search(self, value):
return value
class FunctionExpression(AST):
def __init__(self, name, args):
self.name = name
# The .children attribute is to support homogeneous
# children nodes, but .args is a better name for all the
# code that uses the children, so we support both.
self.children = args
self.args = args
try:
self.function = getattr(self, '_func_%s' % name)
except AttributeError:
raise UnknownFunctionError("Unknown function: %s" % self.name)
self.arity = self.function.arity
self.variadic = self.function.variadic
self.function = self._resolve_arguments_wrapper(self.function)
def pretty_print(self, indent=''):
return "%sFunctionExpression(name=%s, args=%s)" % (
indent, self.name, self.args)
def search(self, value):
return self.function(value)
def _resolve_arguments_wrapper(self, function):
def _call_with_resolved_args(value):
# Before calling the function, we have two things to do:
# 1. Resolve the arguments (evaluate the arg expressions
# against the passed in input.
# 2. Type check the arguments
resolved_args = []
for arg_expression, arg_spec in zip_longest(
self.args, function.argspec,
fillvalue=function.argspec[-1]):
# 1. Resolve the arguments.
current = arg_expression.search(value)
# 2. Type check (provided we have type information).
if arg_spec.types is not None:
_type_check(arg_spec.types, current)
resolved_args.append(current)
return function(*resolved_args)
def _get_allowed_pytypes(types):
allowed_types = []
allowed_subtypes = []
for t in types:
type_ = t.split('-', 1)
if len(type_) == 2:
type_, subtype = type_
allowed_subtypes.append(REVERSE_TYPES_MAP[subtype])
else:
type_ = type_[0]
allowed_types.extend(REVERSE_TYPES_MAP[type_])
return allowed_types, allowed_subtypes
def _type_check(types, current):
# Type checking involves checking the top level type,
# and in the case of arrays, potentially checking the types
# of each element.
allowed_types, allowed_subtypes = _get_allowed_pytypes(types)
# We're not using isinstance() on purpose.
# The type model for jmespath does not map
# 1-1 with python types (booleans are considered
# integers in python for example).
actual_typename = type(current).__name__
if actual_typename not in allowed_types:
raise JMESPathTypeError(self.name, current,
TYPES_MAP.get(actual_typename,
'unknown'),
types)
# If we're dealing with a list type, we can have
# additional restrictions on the type of the list
# elements (for example a function can require a
# list of numbers or a list of strings).
# Arrays are the only types that can have subtypes.
if allowed_subtypes:
_subtype_check(current, allowed_subtypes, types)
def _subtype_check(current, allowed_subtypes, types):
if len(allowed_subtypes) == 1:
# The easy case, we know up front what type
# we need to validate.
allowed_subtypes = allowed_subtypes[0]
for element in current:
actual_typename = type(element).__name__
if actual_typename not in allowed_subtypes:
raise JMESPathTypeError(self.name, element,
actual_typename,
types)
elif len(allowed_subtypes) > 1 and current:
# Dynamic type validation. Based on the first
# type we see, we validate that the remaining types
# match.
first = type(current[0]).__name__
for subtypes in allowed_subtypes:
if first in subtypes:
allowed = subtypes
break
else:
raise JMESPathTypeError(self.name, current[0],
first, types)
for element in current:
actual_typename = type(element).__name__
if actual_typename not in allowed:
raise JMESPathTypeError(self.name, element,
actual_typename,
types)
return _call_with_resolved_args
def signature(*arguments, **kwargs):
def _record_arity(func):
func.arity = len(arguments)
func.variadic = kwargs.get('variadic', False)
func.argspec = arguments
return func
return _record_arity
@signature(_Arg(), variadic=True)
def _func_not_null(self, *arguments):
for argument in arguments:
if argument is not None:
return argument
@signature(_Arg(types=['number']))
def _func_abs(self, arg):
return abs(arg)
@signature(_Arg(types=['array-number']))
def _func_avg(self, arg):
return sum(arg) / float(len(arg))
@signature(_Arg())
def _func_to_string(self, arg):
if isinstance(arg, STRING_TYPE):
return arg
else:
return json.dumps(arg)
@signature(_Arg())
def _func_to_number(self, arg):
if isinstance(arg, (list, dict, bool)):
return None
elif arg is None:
return None
elif isinstance(arg, (int, float)):
return arg
else:
try:
if '.' in arg:
return float(arg)
else:
return int(arg)
except ValueError:
return None
@signature(_Arg(types=['array', 'string']), _Arg())
def _func_contains(self, subject, search):
return search in subject
@signature(_Arg(types=['string', 'array', 'object']))
def _func_length(self, arg):
return len(arg)
@signature(_Arg(types=['number']))
def _func_ceil(self, arg):
return math.ceil(arg)
@signature(_Arg(types=['number']))
def _func_floor(self, arg):
return math.floor(arg)
@signature(_Arg(types=['string']), _Arg(types=['array-string']))
def _func_join(self, separator, array):
return separator.join(array)
@signature(_Arg(types=['array-number']))
def _func_max(self, arg):
if arg:
return max(arg)
else:
return None
@signature(_Arg(types=['array-number']))
def _func_min(self, arg):
if arg:
return min(arg)
else:
return None
@signature(_Arg(types=['array-string', 'array-number']))
def _func_sort(self, arg):
return list(sorted(arg))
@signature(_Arg(types=['array-number']))
def _func_sum(self, arg):
return sum(arg)
@signature(_Arg(types=['object']))
def _func_keys(self, arg):
# To be consistent with .values()
# should we also return the indices of a list?
return list(arg.keys())
@signature(_Arg(types=['object']))
def _func_values(self, arg):
return list(arg.values())
@signature(_Arg())
def _func_type(self, arg):
if isinstance(arg, STRING_TYPE):
return "string"
elif isinstance(arg, bool):
return "boolean"
elif isinstance(arg, list):
return "array"
elif isinstance(arg, dict):
return "object"
elif isinstance(arg, (float, int)):
return "number"
elif arg is None:
return "null"
def _create_key_func(self, expression, allowed_types):
py_types = []
for type_ in allowed_types:
py_types.extend(REVERSE_TYPES_MAP[type_])
def keyfunc(x):
result = expression.search(x)
type_name = type(result).__name__
if type_name not in py_types:
raise JMESPathTypeError(self.name,
result,
type_name,
allowed_types)
return result
return keyfunc
@signature(_Arg(types=['array']), _Arg(types=['expref']))
def _func_sort_by(self, array, expref):
# sort_by allows for the expref to be either a number of
# a string, so we have some special logic to handle this.
# We evaluate the first array element and verify that it's
# either a string of a number. We then create a key function
# that validates that type, which requires that remaining array
# elements resolve to the same type as the first element.
if not array:
return array
required_type = TYPES_MAP.get(
type(expref.search(array[0])).__name__)
if required_type not in ['number', 'string']:
raise JMESPathTypeError(self.name,
array[0],
required_type,
['string', 'number'])
keyfunc = self._create_key_func(expref, [required_type])
return list(sorted(array, key=keyfunc))
@signature(_Arg(types=['array']), _Arg(types=['expref']))
def _func_max_by(self, array, expref):
keyfunc = self._create_key_func(expref, ['number'])
return max(array, key=keyfunc)
@signature(_Arg(types=['array']), _Arg(types=['expref']))
def _func_min_by(self, array, expref):
keyfunc = self._create_key_func(expref, ['number'])
return min(array, key=keyfunc)
class ExpressionReference(AST):
def __init__(self, expression):
self.children = [expression]
def search(self, value):
return _Expression(self.children[0])
class _Expression(AST):
def __init__(self, expression):
self.expression = expression
def search(self, value):
return self.expression.search(value)
class Pipe(AST):
def __init__(self, parent, child):
self.children = [parent, child]
def search(self, value):
left = self.children[0].search(value)
return self.children[1].search(left)
def pretty_print(self, indent=''):
sub_indent = indent + ' ' * 4
return "%s%s(\n%s%s,\n%s%s)" % (
indent, self.__class__.__name__,
sub_indent, self.children[0].pretty_print(sub_indent),
sub_indent, self.children[1].pretty_print(sub_indent))
class Projection(AST):
def __init__(self, left, right):
self.children = [left, right]
def search(self, value):
base = self._evaluate_left_child(value)
if base is None:
return None
else:
collected = self._evaluate_right_child(base)
return collected
def _evaluate_left_child(self, value):
base = self.children[0].search(value)
if isinstance(base, list):
return base
else:
# Invalid type, so we return None.
return None
def _evaluate_right_child(self, value):
collected = []
for element in value:
current = self.children[1].search(element)
if current is not None:
collected.append(current)
return collected
def pretty_print(self, indent=''):
sub_indent = indent + ' ' * 4
return "%s%s(\n%s%s,\n%s%s)" % (
indent, self.__class__.__name__,
sub_indent, self.children[0].pretty_print(sub_indent),
sub_indent, self.children[1].pretty_print(sub_indent))
class ValueProjection(Projection):
def _evaluate_left_child(self, value):
base_hash = self.children[0].search(value)
try:
return base_hash.values()
except AttributeError:
return None
class FilterProjection(Projection):
# A filter projection is a left projection that
# filter elements against an expression before allowing
# them to be right evaluated.
def __init__(self, left, right, comparator):
self.children = [left, right, comparator]
def _evaluate_right_child(self, value):
result = []
for element in value:
if self.children[2].search(element):
result.append(element)
return super(FilterProjection, self)._evaluate_right_child(result)
def pretty_print(self, indent=''):
sub_indent = indent + ' ' * 4
return "%s%s(\n%s%s,\n%s%s,\n%s%s)" % (
indent, self.__class__.__name__,
sub_indent, self.children[0].pretty_print(sub_indent),
sub_indent, self.children[2].pretty_print(sub_indent),
sub_indent, self.children[1].pretty_print(sub_indent),
)
class Flatten(AST):
def __init__(self, element):
self.children = [element]
def pretty_print(self, indent=''):
return "%s%s(%s)" % (
indent, self.__class__.__name__,
self.children[0].pretty_print(indent).lstrip())
def search(self, value):
original = self.children[0].search(value)
if not isinstance(original, list):
return None
merged_list = []
for element in original:
if isinstance(element, list):
merged_list.extend(element)
else:
merged_list.append(element)
return merged_list
|