This file is indexed.

/usr/share/pyshared/mlpy/_data.py is in python-mlpy 2.2.0~dfsg1-2.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
## This file is part of MLPY.
## Input data module.

## This code is written by Davide Albanese, <albanese@fbk.eu>.
## (C) 2008 Fondazione Bruno Kessler - Via Santa Croce 77, 38100 Trento, ITALY.

## This program is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.

## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.

## You should have received a copy of the GNU General Public License
## along with this program.  If not, see <http://www.gnu.org/licenses/>.

__all__ = ["data_fromfile", "data_fromfile_wl", "data_tofile", "data_tofile_wl", "data_normalize", "data_standardize", "standardize", "center", "standardize_from", "center_from"]

from numpy import *
import csv
import warnings

def deprecation(message):
    warnings.warn(message, DeprecationWarning)


def data_fromfile(file, ytype=int):
    """
    Read data file in the form::

      x11 [TAB] x12 [TAB] ... x1n [TAB] y1
      x21 [TAB] x22 [TAB] ... x2n [TAB] y2
       .         .        .    .        .
       .         .         .   .        .
       .         .          .  .        .
      xm1 [TAB] xm2 [TAB] ... xmn [TAB] ym
    
    where xij are float and yi are of type 'ytype'
    (numpy.int or numpy.float).
    
    Input
    
      * *file*  - data file name
      * *ytype* - numpy datatype for labels (numpy.int
        or numpy.float)
      
    Output
    
      * *x* - data    [2D numpy array float]
      * *y* - classes [1D numpy array int or float]

    Example:

    >>> from numpy import *
    >>> from mlpy import *
    >>> x, y = data_fromfile('data_example.dat')
    >>> x
    array([[ 1.1,  2. ,  5.3,  3.1],
    ...    [ 3.7,  1.4,  2.3,  4.5],
    ...    [ 1.4,  5.4,  3.1,  1.4]])
    >>> y
    array([ 1, -1,  1])
    """

    f = open(file)
    firstline = f.readline()
    cols = len(firstline.split("\t"))
    f.close()  
    
    try:
        data = fromfile(file = file, sep = "\t")  
        data = data.reshape((-1, cols))
    except ValueError:
        raise ValueError("'%s' is not a valid data file" % file)
    
    x = delete(data, -1, 1)
    y = data[:, -1].astype(ytype)
   
    return (x, y)


def data_fromfile_wl(file):
    """
    Read data file in the form::

      x11 [TAB] x12 [TAB] ... x1n [TAB]
      x21 [TAB] x22 [TAB] ... x2n [TAB]
       .         .        .    .
       .         .         .   .       
       .         .          .  .       
      xm1 [TAB] xm2 [TAB] ... xmn [TAB]
    
    where xij are float.
    
    Input
    
      * *file* - data file name
      
    Output
    
      * *x* - data    [2D numpy array float]

    Example:

    >>> from numpy import *
    >>> from mlpy import *
    >>> x, y = data_fromfile('data_example.dat')
    >>> x
    array([[ 1.1,  2. ,  5.3,  3.1],
    ...    [ 3.7,  1.4,  2.3,  4.5],
    ...    [ 1.4,  5.4,  3.1,  1.4]])
    """

    f = open(file)
    firstline = f.readline()
    cols = len(firstline.split("\t"))
    f.close()  
    
    try:
        data = fromfile(file = file, sep = "\t")  
        data = data.reshape((-1, cols))
    except ValueError:
        raise ValueError("'%s' is not a valid data file" % file)
    
    return data
   

def data_tofile(file, x, y, sep="\t"):
    """
    Write data file in the form::

      x11 [sep] x12 [sep] ... x1n [sep] y1
      x21 [sep] x22 [sep] ... x2n [sep] y2
       .         .        .    .        .
       .         .         .   .        .
       .         .          .  .        .
      xm1 [sep] xm2 [sep] ... xmn [sep] ym
    
    where xij are float and yi are integer.
    
    Input
    
      * *file* - data file name
      * *x*    - data    [2D numpy array float]
      * *y*    - classes [1D numpy array integer]
      * *sep*  - separator
    """

    
    writer = csv.writer(open(file, "wb"), delimiter = sep, lineterminator = '\n')
    writer.writerows(append(x, y.reshape(-1, 1), axis = 1))


def data_tofile_wl(file, x, sep="\t"):
    """
    Write data file in the form::

      x11 [sep] x12 [sep] ... x1n [sep]
      x21 [sep] x22 [sep] ... x2n [sep]
       .         .        .    .       
       .         .         .   .       
       .         .          .  .       
      xm1 [sep] xm2 [sep] ... xmn [sep]
    
    where xij are float.
    
    Input
    
      * *file* - data file name
      * *x*    - data    [2D numpy array float]
      * *sep*  - separator
    """


    writer = csv.writer(open(file, "wb"), delimiter = sep, lineterminator = '\n')
    writer.writerows(x)


def data_normalize(x):
    """
    Normalize numpy array (2D) x.

    Input
    
      * *x* - data [2D numpy array float]

    Output
    
      * normalized data      

    Example:

    >>> from numpy import *
    >>> from mlpy import *
    >>> x = array([[ 1.1,  2. ,  5.3,  3.1],
    ...            [ 3.7,  1.4,  2.3,  4.5],
    ...            [ 1.4,  5.4,  3.1,  1.4]])
    >>> data_normalize(x)
    array([[-0.9797065 , -0.48295391,  1.33847226,  0.12418815],
    ...    [ 0.52197912, -1.13395464, -0.48598056,  1.09795608],
    ...    [-0.75217354,  1.35919078,  0.1451563 , -0.75217354]])
    """
    
    deprecation("deprecated in mlpy 2.3")

    #raise DeprecationWarning("Deprecated in version 2.1.0")
    
    ret_x = empty_like(x)
    mean_x = x.mean(axis=1)
    std_x = x.std(axis=1) * sqrt(x.shape[1] / (x.shape[1] - 1.0))

    for i in range(x.shape[0]):
        ret_x[i, :] = (x[i, :] - mean_x[i]) / std_x[i]
    
    return ret_x
   

def data_standardize(x, p = None):
    """
    Standardize numpy array (2D) x and optionally
    standardize p using mean and std of x.

    Input
    
      * *x* - data          [2D numpy array float]
      * *p* - optional data [2D numpy array float]

    Output
    
      * standardized data      

    Example:

    >>> from numpy import *
    >>> from mlpy import *
    >>> x = array([[ 1.1,  2. ,  5.3,  3.1],
    ...            [ 3.7,  1.4,  2.3,  4.5],
    ...            [ 1.4,  5.4,  3.1,  1.4]])
    >>> data_standardize(x)
    array([[-0.67958381, -0.43266792,  1.1157668 ,  0.06441566],
    ...    [ 1.1482623 , -0.71081158, -0.81536804,  0.96623494],
    ...    [-0.46867849,  1.1434795 , -0.30039875, -1.0306506 ]])
    """

    deprecation("deprecated in mlpy 2.3. Use mlpy.standardize() and "
                "mlpy.standardize_from() instead")

    ret_x = empty_like(x)
    mean_x = x.mean(axis=0)
    std_x = x.std(axis=0) * sqrt(x.shape[0] / (x.shape[0] - 1.0))

    for i in range(x.shape[1]):
        ret_x[:, i] = (x[:, i] - mean_x[i]) / std_x[i]

    if not p == None:
        ret_p = empty_like(p)

        for i in range(p.shape[1]):
            ret_p[:, i] = (p[:, i] - mean_x[i]) / std_x[i]
    
    if p == None:
        return ret_x
    else:
        return (ret_x, ret_p)
    
    
def standardize(x):
    """ Standardize x.
    
    x is standardized to have mean 0 and unit length by columns.
    Return standardized x, the mean and the standard deviation.
    """

    m = x.mean(axis=0)
    s = x.std(axis=0)

    return (x - m) / (s * np.sqrt(x.shape[0])), m, s


def center(y):
    """ Center y to have mean 0.

    Return centered y.
    """
    
    m =  np.mean(y)

    return y - m, m


def standardize_from(x, mean, std):
    """Standardize x using external mean and standard deviation.

    Return standardized x.
    """

    return (x - mean) / (std * np.sqrt(x.shape[0]))


def center_from(y, mean):
    """Center y using external mean.

    Return centered y.
    """

    return y - mean