/usr/share/pyshared/mlpy/_ranking.py is in python-mlpy 2.2.0~dfsg1-2.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 | ## This file is part of MLPY.
## Feature Ranking module based on Recursive Feature Elimination (RFE)
## and Reecursive Forward Selection (RFS) methods.
## This code is written by Davide Albanese, <albanese@fbk.eu>.
##(C) 2007 Fondazione Bruno Kessler - Via Santa Croce 77, 38100 Trento, ITALY.
## This program is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
## You should have received a copy of the GNU General Public License
## along with this program. If not, see <http://www.gnu.org/licenses/>.
__all__ = ['Ranking']
from numpy import *
import math
def project(elem):
"""
Return an array ranging on [0,1]
"""
if not isinstance(elem, ndarray):
raise TypeError('project() argument must be numpy ndarray')
m = elem.min()
M = elem.max()
D = float(M - m)
return (elem - m) / D
def Entropy(pj):
E = 0.0
for p in pj:
if p != 0.0:
E += -(p * math.log(p, 2))
return E
def onestep(R):
"""
One-step Recursive Feature Elimination.
Return a list containing uninteresting features.
See:
I. Guyon, J. Weston, S.Barnhill, V. Vapnik.
Gene selection for cancer classification using
support vector machines.
Machine Learning, (46):389-422, 2002.
"""
if not isinstance(R, ndarray):
raise TypeError('onestep() argument must be numpy ndarray')
return R.argsort()[::-1]
def rfe(R):
"""
Recursive Feature Elimination.
Return a list containing uninteresting features.
See:
I. Guyon, J. Weston, S.Barnhill, V. Vapnik.
Gene selection for cancer classification using
support vector machines.
Machine Learning, (46):389-422, 2002.
"""
if not isinstance(R, ndarray):
raise TypeError('rfe() argument must be numpy ndarray')
return argmin(R)
def bisrfe(R):
"""
Bis Recursive Feature Elimination.
Return a list containing uninteresting features.
See:
I. Guyon, J. Weston, S.Barnhill, V. Vapnik.
Gene selection for cancer classification using
support vector machines.
Machine Learning, (46):389-422, 2002.
"""
if not isinstance(R, ndarray):
raise TypeError('bisrfe() argument must be numpy ndarray')
idx = R.argsort()[::-1]
start = int(idx.shape[0] / 2)
return idx[start:]
def sqrtrfe(R):
"""
Sqrt Recursive Feature Elimination.
Return a list containing uninteresting features.
See:
I. Guyon, J. Weston, S.Barnhill, V. Vapnik.
Gene selection for cancer classification using
support vector machines.
Machine Learning, (46):389-422, 2002.
"""
if not isinstance(R, ndarray):
raise TypeError('sqrtrfe() argument must be numpy ndarray')
idx = R.argsort()[::-1]
start = int(idx.shape[0] - math.sqrt(idx.shape[0]))
return idx[start:]
def erfe(R):
"""
Entropy-based Recursive Feature Elimination.
Return a list containing uninteresting features according
to the entropy of the weights distribution.
See:
C. Furlanello, M. Serafini, S. Merler, and G. Jurman.
Advances in Neural Network Research: IJCNN 2003.
An accelerated procedure for recursive feature ranking
on microarray data.
Elsevier, 2003.
"""
if not isinstance(R, ndarray):
raise TypeError('erfe() argument must be numpy ndarray')
bins = math.sqrt(R.shape[0])
Ht = 0.5 * math.log(bins, 2)
Mt = 0.2
pw = project(R)
M = pw.mean()
# Compute the relative frequancies
pj = (histogram(pw, bins, range=(0.0, 1.0)))[0] / float(pw.size)
# Compute entropy
H = Entropy(pj)
if H > Ht and M > Mt:
# Return the indices s.t. pw = [0, 1/bins]
idx = where(pw <= (1 / bins))[0]
return idx
else:
# Compute L[i] = ln(pw[i])
L = empty_like(pw)
for i in xrange(pw.size):
L[i] = math.log(pw[i] + 1.0)
M = L.mean()
# Compute A = #{L[i] < M} and half A
idx = where(L < M)[0]
A = idx.shape[0]
hA = 0.5 * A
# If #(L[i]==0.0) >= hA return indicies where L==0.0
iszero = where(L == 0.0)[0]
if iszero.shape[0] >= hA:
return iszero
while True:
M = 0.5 * M
# Compute B = #{L[i] < M}
idx = where(L < M)[0]
B = idx.shape[0]
# Stop iteration when B <= (0.5 * A)
if (B <= hA):
break
return idx
def rfs(R):
"""
Recursive Forward Selection.
"""
if not isinstance(R, ndarray):
raise TypeError('rfe() argument must be numpy ndarray')
return argmax(R)
class Ranking:
"""
Ranking class based on Recursive Feature Elimination (RFE) and
Recursive Forward Selection (RFS) methods.
Example:
>>> from numpy import *
>>> from mlpy import *
>>> x = array([[1.1, 2.1, 3.1, -1.0], # first sample
... [1.2, 2.2, 3.2, 1.0], # second sample
... [1.3, 2.3, 3.3, -1.0]]) # third sample
>>> y = array([1, -1, 1]) # classes
>>> myrank = Ranking() # initialize ranking class
>>> mysvm = Svm() # initialize svm class
>>> myrank.compute(x, y, mysvm) # compute feature ranking
array([3, 1, 2, 0])
"""
RFE_METHODS = ['rfe', 'bisrfe', 'sqrtrfe', 'erfe']
RFS_METHODS = ['rfs']
OTHER_METHODS = ['onestep']
def __init__(self, method='rfe', lastsinglesteps = 0):
"""
Initialize Ranking class.
Input
* *method* - [string] method ('onestep', 'rfe', 'bisrfe', 'sqrtrfe', 'erfe', 'rfs')
* *lastsinglesteps* - [integer] last single steps with 'rfe'
"""
if not method in self.RFE_METHODS + self.RFS_METHODS + self.OTHER_METHODS:
raise ValueError("Method '%s' is not supported." % method)
self.__method = method
self.__lastsinglesteps = lastsinglesteps
self.__weights = None
def __compute_rfe(self, x, y, debug):
loc_x = x.copy()
glo_idx = arange(x.shape[1], dtype = int)
tot_disc = arange(0, dtype = int)
while glo_idx.shape[0] > 1:
R = self.__weights(loc_x, y)
if self.__method == 'onestep':
loc_disc = onestep(R)
elif self.__method == 'rfe':
loc_disc = rfe(R)
elif self.__method == 'sqrtrfe':
if loc_x.shape[1] > self.__lastsinglesteps: loc_disc = sqrtrfe(R)
else: loc_disc = rfe(R)
elif self.__method == 'bisrfe':
if loc_x.shape[1] > self.__lastsinglesteps: loc_disc = bisrfe(R)
else: loc_disc = rfe(R)
elif self.__method == 'erfe':
if loc_x.shape[1] > self.__lastsinglesteps: loc_disc = erfe(R)
else: loc_disc = rfe(R)
loc_x = delete(loc_x, loc_disc, 1) # remove local discarded from local x
glo_disc = glo_idx[loc_disc] # project local discarded into global discarded
# remove discarded from global indicies
glo_bool = ones(glo_idx.shape[0], dtype = bool)
glo_bool[loc_disc] = False
glo_idx = glo_idx[glo_bool]
if debug:
print glo_idx.shape[0], "features remaining"
tot_disc = r_[glo_disc, tot_disc]
if glo_idx.shape[0] == 1:
tot_disc = r_[glo_idx, tot_disc]
return tot_disc
def __compute_rfs(self, x, y, debug):
loc_x = x.copy()
glo_idx = arange(x.shape[1], dtype = int)
tot_sel = arange(0, dtype = int)
while glo_idx.shape[0] > 1:
R = self.__weights(loc_x, y)
if self.__method == 'rfs':
loc_sel = rfs(R)
loc_x = delete(loc_x, loc_sel, 1) # remove local selected from local x
glo_sel = glo_idx[loc_sel] # project local selected into global selected
# remove selected from global indicies
glo_bool = ones(glo_idx.shape[0], dtype = bool)
glo_bool[loc_sel] = False
glo_idx = glo_idx[glo_bool]
if debug:
print glo_idx.shape[0], "features remaining"
tot_sel = r_[tot_sel, glo_sel]
if glo_idx.shape[0] == 1:
tot_sel = r_[tot_sel, glo_idx]
return tot_sel
def compute(self, x, y, w, debug = False):
"""
Compute the feature ranking.
Input
* *x* - [2D numpy array float] (sample x feature) training data
* *y* - [1D numpy array integer] (1 or -1) classes
* *w* - object (e.g. classifier) with weights() method
* *debug* - [bool] show remaining number of feature at each step (True or False)
Output
* *feature ranking* - [1D numpy array integer] ranked feature indexes
"""
try:
self.__weights = w.weights
except AttributeError, e:
raise ValueError(e)
if self.__method in self.RFE_METHODS + self.OTHER_METHODS:
return self.__compute_rfe(x, y, debug)
elif self.__method in self.RFS_METHODS:
return self.__compute_rfs(x, y, debug)
|