This file is indexed.

/usr/share/pyshared/mlpy/_resampling.py is in python-mlpy 2.2.0~dfsg1-2.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
## This file is part of MLPY.
## Resampling Methods.

## Resampling methods returns lists of training/test indexes.
    
## This code is written by Davide Albanese, <albanese@fbk.eu>.
## (C) 2007 Fondazione Bruno Kessler - Via Santa Croce 77, 38100 Trento, ITALY.

## This program is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.

## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.

## You should have received a copy of the GNU General Public License
## along with this program.  If not, see <http://www.gnu.org/licenses/>.

__all__ = ['kfold', 'kfoldS', 'leaveoneout', 'montecarlo', 'montecarloS',
           'allcombinations', 'manresampling', 'resamplingfile']

import random
import csv
import numpy


def flattenlist(l):
    """
    Flatten a list containing other lists or elements.

    l - list
    """

    res = []
    for elem in l:
        if isinstance(elem, list):
          res += elem
        else:
          res.append(elem)
    return res


def splitlist(l, n):
    """
    Split a list into pieces of roughly equal size.
    
    l - list
    n - number of pieces
    """

    if n > len(l):
        raise ValueError("'n' must be smaller than 'l' length")
    
    splitsize = 1.0 / n * len(l)
    return [ l[int(round(i*splitsize)):int(round((i+1)*splitsize))] for i in range(n) ]


def pncl(cl):
    """
    Return the indexes of positive and negative classes.

    cl - class labels (numpy array 1D integer)
    """

    classes = numpy.unique(cl)
    
    if classes.shape[0] != 2:
        raise ValueError("pncl() works only for two-classes")

    lab = numpy.array(cl)

    pindexes = numpy.where(lab == classes[1])[0]
    nindexes = numpy.where(lab == classes[0])[0]
    
    return pindexes.tolist(), nindexes.tolist()

   
def allcomb(items, k):
    """
    Generator, returns all combinations of items in lists of length k.
    """
    
    if k==0:
        yield []
    else:
        for i in xrange(len(items) - k+1):
            for c in allcomb(items[i+1:], k-1):
                yield [items[i]] + c
  

def kfold(nsamples, sets, rseed = 0, indexes = None):
    """K-fold Resampling Method.

    Input
    
      * *nsamples* - [integer] number of samples
      * *sets*     - [integer] number of subsets (= number of tr/ts pairs)
      * *rseed*    - [integer] random seed
      * *indexes*  - [list integer] source indexes (None for [0, nsamples-1])

    Output
    
      * *idx* - list of *sets* tuples: ([training indexes], [test indexes])
    """

    random.seed(rseed)

    if indexes == None:
        indexes = range(nsamples)
    
    random.shuffle(indexes)

    try:
        subs = splitlist(indexes, sets)    
    except ValueError:
        raise ValueError("'sets' must be smaller than 'nsamples'")

    res = []
    for i in range(sets):
        tr = flattenlist(subs[:i] + subs[i+1:])
        ts = subs[i]
        res.append((tr, ts))
        
    return res
        

def kfoldS(cl, sets, rseed = 0, indexes = None):
    """Stratified K-fold Resampling Method.
    
    Input
    
      * *cl*      - [list (1 or -1)] class label
      * *sets*    - [integer] number of subsets (= number of tr/ts pairs)
      * *rseed*   - [integer] random seed
      * *indexes* - [list integer] source indexes (None for [0, nsamples-1])

    Output
    
      * *idx* - list of *sets* tuples: ([training indexes], [test indexes])
    """

    random.seed(rseed)
    
    pindexes, nindexes = pncl(cl)
       
    if indexes != None:
        pindexes = [indexes[i] for i in pindexes]
        nindexes = [indexes[i] for i in nindexes]

    random.shuffle(pindexes)
    random.shuffle(nindexes)

    try:
        psubs = splitlist(pindexes, sets)
        nsubs = splitlist(nindexes, sets)
    except ValueError:
        raise ValueError("'sets' must be smaller than number of positive samples (%s) and "
                         "than number of negative samples (%s)" % (len(pindexes), len(nindexes)))

    res = []
    for i in range(sets):
        tr = flattenlist(psubs[:i] + psubs[i+1:] + nsubs[:i] + nsubs[i+1:])
        ts = flattenlist(psubs[i] + nsubs[i])
        res.append((tr, ts))
        
    return res
        

def leaveoneout(nsamples, indexes = None):
    """Leave-one-out Resampling Method.
    
    Input
    
      * *nsamples* - [integer] number of samples
      * *indexes*  - [list integer] source indexes (None for [0, nsamples-1])

    Output
    
      * *idx* - list of *nsamples* tuples: ([training indexes], [test indexes])
    """

    if indexes == None:
        indexes = range(nsamples)
    
    res = []
    for i in range(len(indexes)):
        tr = indexes[:i] + indexes[i+1:]
        ts = [indexes[i]]
        res.append((tr, ts))
        
    return res


def montecarlo(nsamples, pairs, sets, rseed = 0, indexes = None):
    """Monte Carlo Resampling Method.
    
    Input
    
      * *nsamples* - [integer] number of samples
      * *pairs*    - [integer] number of tr/ts pairs
      * *sets*     - [integer] 1/(fraction of data in test sets)
      * *rseed*    - [integer] random seed
      * *indexes*  - [list integer] source indexes (None for [0, nsamples-1])

    Output
    
      * *idx* - list of *pairs* tuples: ([training indexes], [test indexes])
    """

    random.seed(rseed)

    if indexes == None:
        indexes = range(nsamples)
    
    res = []
    for i in range(pairs):
        random.shuffle(indexes)
        
        try:
            subs = splitlist(indexes, sets)
        except ValueError:
            raise ValueError("'sets' must be smaller than number of 'nsamples'")

        tr = flattenlist(subs[:-1])
        ts = subs[-1]
        res.append((tr, ts))

    return res


def montecarloS(cl, pairs, sets, rseed = 0, indexes = None):
    """Stratified Monte Carlo Resampling Method.

    Input
    
      * *cl*      - [list (1 or -1)] class label
      * *pairs*   - [integer] number of tr/ts pairs
      * *sets*    - [integer] 1/(fraction of data in test sets)
      * *rseed*   - [integer] random seed
      * *indexes* - [list integer] source indexes  (None for [0, nsamples-1])

    Output
    
      * *idx* - list of *pairs* tuples: ([training indexes], [test indexes])
    """

    random.seed(rseed)

    pindexes, nindexes = pncl(cl)

    if indexes != None:
        pindexes = [indexes[i] for i in pindexes]
        nindexes = [indexes[i] for i in nindexes]

    res = []
    for i in range(pairs):    
        random.shuffle(pindexes)
        random.shuffle(nindexes)

        try:
            psubs = splitlist(pindexes, sets)
            nsubs = splitlist(nindexes, sets)
        except ValueError:
            raise ValueError("'sets' must be smaller than number of positive samples (%s) and "
                             "than number of negative samples (%s)" % (len(pindexes), len(nindexes)))

        tr = flattenlist(psubs[:-1] + nsubs[:-1])
        ts = flattenlist(psubs[-1] + nsubs[-1])
        res.append((tr, ts))

    return res


def allcombinations(cl, sets, indexes = None):
    """All Combinations Resampling Method.

    Input
    
      * *cl*      - [list (1 or -1)] class label
      * *sets*    - [integer] number of subset
      * *indexes* - [list integer] source indexes  (None for [0, nsamples-1])

    Output
    
      * *idx* - list of tuples: ([training indexes], [test indexes])
    """


    nsamples = len(cl)
    pindexes, nindexes = pncl(cl)

    if indexes != None:
        pindexes = [indexes[i] for i in pindexes]
        nindexes = [indexes[i] for i in nindexes]
    else:
        indexes = range(len(cl))
        
    pn, nn  = len(pindexes)/sets, len(nindexes)/sets
    
    if pn < 1 or nn < 1:
        raise ValueError("'sets' must be smaller than number of positive samples (%s) and "
                         "than number of negative samples (%s)" % (len(pindexes), len(nindexes)))

    res = []
    for pts in allcomb(pindexes, pn):
        for nts in allcomb(nindexes, nn):
            tr = indexes[:]
            ts = pts + nts        
            for x in ts:
                tr.remove(x)       
            res.append((tr, ts))

    return res


def manresampling(cl, pairs, trp, trn, tsp, tsn, rseed = 0):
    """Manual Resampling.
    
    Input
    
      * *cl*    - [list (1 or -1)] class label
      * *pairs* - [integer] number of tr/ts pairs
      * *trp*   - [integer] number of positive samples in training
      * *trn*   - [integer] number of negative samples in training
      * *tsp*   - [integer] number of positive samples in test
      * *tsn*   - [integer] number of negative samples in test

    Output
    
      * *idx* - list of *pairs* tuples: ([training indexes], [test indexes])
    """

    
    random.seed(rseed)
    pindexes, nindexes = pncl(cl)
    
    if (trp + tsp) > len(pindexes):
        raise ValueError("'trp' + 'tsp' must be smaller than number of positive samples (%s)" % len(pindexes))
    
    if (trn + tsn) > len(nindexes):
        raise ValueError("'trn' + 'tsn' must be smaller than number of negative samples (%s)" % len(nindexes))
    
    res = []
    for i in range(pairs):
        random.shuffle(pindexes)
        random.shuffle(nindexes)
        trp_idx = pindexes[0:trp]
        tsp_idx = pindexes[trp:trp+tsp]
        trn_idx = nindexes[0:trn]
        tsn_idx = nindexes[trn:trn+tsn]
        tr = trp_idx + trn_idx
        ts = tsp_idx + tsn_idx     
        res.append((tr, ts))
        
    return res


def resamplingfile(nsamples, file, sep = '\t'):
    """Resampling file from file.

    Returns a list of tuples:
    ([training indexes],[test indexes])
    
    Read a file in the form::
    
      [test indexes 'sep'-separated for the first  replicate]
      [test indexes 'sep'-separated for the second replicate]
                              .
                              .
                              .
      [test indexes 'sep'-separated for the last   replicate]

    where indexes must be integers in [0, nsamples-1].

    Input
    
      * *file*     - [string] test indexes file
      * *nsamples* - [integer] number of samples

    Output
    
      * *idx* - list of tuples: ([training indexes],[test indexes])
    """

    
    reader = csv.reader(open(file, "r"), delimiter=sep, lineterminator='\n')
    
    res = []
    for row in reader:

        # read test indexes
        ts_tmp = [int(s) for s in row]
        ts = numpy.unique(ts_tmp).tolist()
        if not len(ts_tmp) == len(ts):
            print "Warning: replicate %s: double values. Fixed" % len(res)
        if len(ts) == 0:
            raise ValueError("Replicate %s: no samples in test" % len(res))    
        
        # build training
        tr_tmp = range(nsamples)
        for idx in ts:
            try:
                tr_tmp.remove(idx)
            except ValueError:
                raise ValueError("Replicate %s: sample %s does not exist" % (len(res), idx))
        tr = tr_tmp
        if len(tr) == 0:
            raise ValueError("Replicate %s: no samples in training" % len(res))    
        
        res.append((tr, ts))

    return res