This file is indexed.

/usr/lib/python2.7/dist-packages/pymzml/spec.py is in python-mzml 0.7.4-dfsg-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
#!/usr/bin/env python3.2
# -*- coding: utf-8 -*-
# encoding: utf-8
"""
Spectrum class offers a python object for mass spectrometry data.
The spectrum object holds the basic information on the spectrum and offers
methods to interrogate properties of the spectrum.
Data, i.e. mass over charge (m/z) and intensity decoding is performed on demand
and can be accessed via their properties, e.g. :py:attr:`spec.Spectrum.peaks`.

The Spectrum class is used in the :py:class:`run.Run` class.
There each spectrum is accessible as a Spectrum object.

Theoretical spectra can also be created using the setter functions.
For example, m/z values, intensities, and peaks can be set by the
corresponding properties: :py:attr:`spec.Spectrum.mz`,
:py:attr:`spec.Spectrum.i`, :py:attr:`spec.Spectrum.peaks`.
"""
#
# pymzml
#
# Copyright (C) 2010-2011 T. Bald, J. Barth, M. Specht, C. Fufezan
#
#    This program is free software: you can redistribute it and/or modify
#    it under the terms of the GNU General Public License as published by
#    the Free Software Foundation, either version 3 of the License, or
#    (at your option) any later version.
#
#    This program is distributed in the hope that it will be useful,
#    but WITHOUT ANY WARRANTY; without even the implied warranty of
#    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#    GNU General Public License for more details.
#
#    You should have received a copy of the GNU General Public License
#    along with this program.  If not, see <http://www.gnu.org/licenses/>.

from __future__ import print_function

import sys
import math
import copy
import random
import re

from base64 import b64decode as b64dec
from struct import unpack as unpack
from collections import defaultdict as ddict
from operator import itemgetter as itemgetter
import zlib

PROTON = 1.00727646677
ISOTOPE_AVERAGE_DIFFERENCE = 1.002

class Spectrum(dict):
    def __init__(self, measuredPrecision = None , param=None):
        """
        .. function:: __init__( measuredPrecision = value* )

            Initializes a pymzml.spec.Spectrum class.

            :param measuredPrecision: in m/z, mandatory
            :type measuredPrecision: float


        """
        assert isinstance( measuredPrecision , float ), "Require measured precision as input parameter..."
        self.measuredPrecision = measuredPrecision          # this will also set and update internalPrecision
        self.clear()
        self._mz = []
        self._i = []
        #self._time = self._mz
        self.param = param
        self.ms = {}
        return

    def __add__(self,otherSpec):
        """
        Adds two pymzml spectra together.

        :param otherSpec: Spectrum object
        :type otherSpec: object

        Example:

        >>> import pymzml
        >>> s = pymzml.spec.Spectrum( measuredPrescision = 20e-6 )
        >>> file_to_read = "../mzML_example_files/xy.mzML.gz"
        >>> run = pymzml.run.Reader(file_to_read , MS1_Precision = 5e-6 , MSn_Precision = 20e-6)
        >>> for spec in run:
        ...     s += spec

        """
        assert isinstance(otherSpec,Spectrum) , "can only add two pymzML spectra together ..."
        tmp = self.deRef()
        if tmp._reprofiledPeaks == None:
            tmp._reprofiledPeaks = tmp._reprofile_Peaks()

        for mz,i in otherSpec.reprofiledPeaks:
            tmp._reprofiledPeaks[mz] += i

        # deleting original data since we have now a combination of specs
        tmp_reprofiledPeaks = tmp._reprofiledPeaks

        tmp.clear()

        tmp._reprofiledPeaks = tmp_reprofiledPeaks
        tmp['reprofiled'] = True
        return tmp

    def __sub__(self,otherSpec):
        """
        Subtracts two pymzml spectra.
        
        :param otherSpec: Spectrum object
        :type otherSpec: object
        
        """
        assert isinstance(otherSpec,Spectrum) , "can only subtract two pymzML spectra ..."
        tmp = self.deRef()
        
        if tmp._reprofiledPeaks == None:
            tmp._reprofiledPeaks = tmp._reprofile_Peaks()

        for mz,i in otherSpec.reprofiledPeaks:
            tmp._reprofiledPeaks[mz] -= i

        # deleting original data since we have now a combination of specs
        tmp_reprofiledPeaks = tmp._reprofiledPeaks

        tmp.clear()

        tmp._reprofiledPeaks = tmp_reprofiledPeaks
        tmp['reprofiled'] = True
        return tmp

    def __mul__(self, value):
        """
        Multiplies each intensity with a float, i.e. scales the spectrum.

        :param value: Value to multiply the spectrum
        :type value: float

        """
        assert isinstance(value, (int, float)), "require float or int of intensity values ..."
        tmp = self.deRef()
        if tmp._peaks != None:
            tmp.peaks  = [(mz, i * float(value)) for mz, i in tmp.peaks]
        if tmp._centroidedPeaks != None:
            tmp.centroidedPeaks = [(mz, i * float(value)) for mz, i in tmp.centroidedPeaks]
        if tmp._reprofiledPeaks != None:
            for mz in tmp._reprofiledPeaks.keys():
                tmp._reprofiledPeaks[mz] *= float(value)
        return tmp

    def __truediv__(self,value):
        """
        Divides each intensity by a float, i.e. scales the spectrum.

        :param value: Value to divide the spectrum
        :type value: float, int

        """
        assert isinstance( value , ( int , float ) ), "require float or int of intensity values ..."
        tmp = self.deRef()
        if tmp._peaks != None:
            tmp.peaks  = [ (mz,i/float(value)) for mz,i in tmp.peaks ]
        if tmp._centroidedPeaks != None:
            tmp.centroidedPeaks = [ (mz,i/float(value)) for mz,i in tmp.centroidedPeaks ]
        if tmp._reprofiledPeaks != None:
            for mz in tmp._reprofiledPeaks.keys():
                tmp._reprofiledPeaks[mz] /= float(value)
        return tmp

    def __div__(self,value):
        return self.__truediv__(value)

    def __del__(self):
        self.clear()
        del self
        return

    def clear(self, scope = 'all'):
        """
        Clears the current spectrum object which means that all variables are
        set to default or ``None``
        """
        if scope == 'all':
            for k in list(self.keys()):
                del self[k]

        self._mz = None
        self._i = None
        self._peaks = None
        self._centroidedPeaks = None
        self._reprofiledPeaks = None
        self._deconvolutedPeaks = None
        self._transformedMzWithError = None
        self._transformedPeaks = None
        self._transformed_deconvolutedPeaks  = None
        self._transformedMassWithError = None
        self._extremeValues = None
        self._tmzSet = None
        self._tmassSet = None
        self._centroidedPeaksSortedByI = None
        self._xmlTree = None
        self._iter = None
        self['BinaryArrayOrder'] = []
        self.ms = {}
        return

    def strip(self, scope = 'all'):
        """
        Reduces the size of the spectrum. Interesting if specs need to be added
        or stored.

        :param scope: accepts currently ["all"]
        :type scope: string

        "all" will remove the raw and profiled data and some internal lookup
        tables as well.
        """
        if scope == 'all':
            if self._peaks == None:
                # decode, just in case ...
                self.peaks
            self._tmzSet = None
            self._tmassSet = None
            self._transformedMzWithError = None
            self._transformedPeaks = None
            self._transformed_deconvolutedPeaks  = None
            self._transformedMassWithError = None
            if 'encodedData' in self.keys():
                del self['encodedData']
                del self['PY:0000000'] # this is the ID tag corresponding to 'encodedData'
        else:
            print("Dont understand strip request ", file = sys.stderr)


    @property
    def mz(self):
        """
        Returns the list of m/z values. If the m/z values are encoded, the
        function :py:func:`_decode()` is used to decode the encoded data.\n
        The mz property can also be setted, e.g. for theoretical data.
        However, it is recommended to use the peaks property to set mz and
        intesity tuples at same time.

        :rtype: list
        :return: Returns a list of mz from the actual analysed spectrum

        """
        if self._mz == None:
            self._decode()
        return self._mz

    @mz.setter
    def mz(self,mzList):
        assert type(mzList) == type([]), "require list of mz values ..."
        self._mz = mzList
        return

    @property
    def time(self):
        """
        Returns the list of m/z values. If the m/z values are encoded, the
        function :py:func:`_decode()` is used to decode the encoded data.\n
        The mz property can also be setted, e.g. for theoretical data.
        However, it is recommended to use the peaks property to set mz and
        intesity tuples at same time.

        :rtype: list
        :return: Returns a list of mz from the actual analysed spectrum

        """
        if self._mz == None:
            self._decode()
        return self._mz

    def extremeValues(self,key):
        """
        Find extreme values, minimal and maximum mz and intensity

        :param key: m/z : "mz" or  intensity : "i"
        :type key: string
        :rtype: tuple
        :return: tuple of minimal and maximum m/z or intensity

        """
        if key not in ['mz','i']:
            print("Dont understand extreme request ", file = sys.stderr)
        if self._extremeValues == None:
            self._extremeValues = {}
        try:
            if key == 'mz':
                self._extremeValues['mz'] = ( min([mz for mz, i in self.peaks]) , max([mz for mz, i in self.peaks]) )
            else:
                self._extremeValues['i']  = ( min([i for mz, i in self.peaks]) , max([i for mz, i in self.peaks]) )
        except ValueError:
            # emtpy spectrum
            self._extremeValues[key] = ()
        return self._extremeValues[key]

    @property
    def i(self):
        """
        Returns the list of the intensity values.
        If the intensity values are encoded, the function :py:func:`_decode()`
        is used to decode the encoded data.\n
        The i property can also be setted, e.g. for theoretical data.However, it
        is recommended to use the peaks property to set mz and intesity tuples
        at same time.

        :rtype: list
        :return: Returns a list of intensity values from the actual analysed
            spectrum.

        """
        if self._i == None:
            self._decode()
        return self._i

    @i.setter
    def i(self,intensityList):
        assert type(intensityList) == type([]), "require list of intensity values ..."
        self._i = intensityList
        return

    @property
    def peaks(self):
        """
        Returns the list of peaks of the spectrum as tuples (m/z, intensity).

        :rtype: list of tuples
        :return: Returns list of tuples (m/z, intensity)

        Example:

        >>> import pymzml
        >>> run = pymzml.run.Reader(spectra.mzMl.gz, MS1_Precision = 5e-6, MSn_Precision = 20e-6)
        >>> for spectrum in run:
        ...     for mz, i in spectrum.peaks:
        ...         print(mz, i)

        .. note::

           The peaks property can also be setted, e.g. for theoretical data.
           It requires a list of mz/intensity tuples.

        """
        if 'reprofiled' in self.keys():
            self.peaks = self._centroid_peaks()
        elif self._peaks == None:
            if self._mz == None and 'encodedData' not in self.keys():
                self._peaks = []
            else:
                self._peaks = list(zip(self.mz , self.i))
        return self._peaks

    @property
    def profile(self):
        """
        Returns the list of peaks of the chromatogram as tuples (time, intensity).

        :rtype: list of tuples
        :return: Returns list of tuples (time, intensity)

        Example:

        >>> import pymzml
        >>> run = pymzml.run.Reader(spectra.mzMl.gz, MS1_Precision = 5e-6, MSn_Precision = 20e-6)
        >>> for spectrum in run:
        ...     for time, i in spectrum.profile:
        ...         print(time, i)
        """
        if 'reprofiled' in self.keys():
            self.peaks = self._centroid_peaks()
        elif self._peaks == None:
            if self._mz == None and 'encodedData' not in self.keys():
                self._peaks = []
            else:
                self._peaks = list(zip(self.mz , self.i))
        return self._peaks


    @peaks.setter
    def peaks(self,mz_i_tuple_list):
        assert type(mz_i_tuple_list) == type([]), "require list of tuples (mz,intensity) ..."
        if len(mz_i_tuple_list) == 0:
            return
        self._mz, self._i = map(list,zip(*mz_i_tuple_list))
        self._peaks = mz_i_tuple_list
        return self

    @property
    def centroidedPeaks(self):
        """
        Returns the centroided version of a profile spectrum. Performs a Gauss
        fit to determine centroided mz and intensities, if the spectrum is in
        measured profile mode.
        Returns a list of tuples of fitted m/z-intesity values. If the spectrum
        peaks are already centroided, these peaks are returned.

        :rtype: list of tuples
        :return: Returns list of tuples (m/z, intensity)

        Example:

        >>> import pymzml
        >>> run = pymzml.run.Reader(spectra.mzMl.gz, MS1_Precision = 5e-6, MSn_Precision = 20e-6)
        >>> for spectrum in run:
        ...     for mz, i in spectrum.centroidedPeaks:
        ...         print(mz, i)

        """
        if 'reprofiled' in self.keys():
            self.peaks = self._centroid_peaks()
            self._centroidedPeaks = self._peaks

        if self._centroidedPeaks == None: #or self._reprofiledPeaks != None:
            self._centroidedPeaks = self._centroid_peaks()
        return self._centroidedPeaks

    @centroidedPeaks.setter
    def centroidedPeaks(self,mz_i_tuple_list):
        assert type(mz_i_tuple_list) == type([]), "require list of tuples (mz,intensity) ..."
        self._centroidedPeaks = mz_i_tuple_list
        return

    def _centroid_peaks(self):
        """
        Perform a Gauss fit to centroid the peaks for the property
        :py:attr:`centroidedPeaks`
        """
        isProfile = False
        for k in self.keys():
            try:
                if 'profile' in k:
                    isProfile = True
                    break
            except:
                print(self.keys(), file = sys.stderr)
                exit(1)
        if isProfile:
            tmp = []
            if 'reprofiled' in self.keys():
                intensity_array = [ i for mz,i in self.reprofiledPeaks ]
                mz_array = [ mz for mz,i in self.reprofiledPeaks ]
                del self['reprofiled']
            else:
                intensity_array = self.i
                mz_array = self.mz
            for pos , i in enumerate(intensity_array[:-1]):
                if pos <= 1: continue
                if 0 < intensity_array[pos-1] < i > intensity_array[pos+1] > 0:
                    # local maximum ...
                    #if 827 <= mz_array[pos] <= 828:
                    #    print("::",i,"@",mz_array[pos])
                    #    print("Found maximum",i,"@",mz_array[pos],intensity_array[pos-1] ,'<' ,i ,"> ",intensity_array[pos+1] )
                    x1  = mz_array[pos-1]
                    y1  = intensity_array[pos-1]
                    x2  = mz_array[pos]
                    y2  = intensity_array[pos]
                    x3  = mz_array[pos+1]
                    y3  = intensity_array[pos+1]
                    
                    if x2-x1 > (x3-x2)*10 or (x2-x1)*10 < x3-x2:
                        # no gauss fit if distance between mz values is too large
                        continue
                    #print(x1,y1,x2,y2,x3,y3)
                    if y3 == y1:
                        # i.e. a reprofiledSpec
                        x1  = mz_array[pos-5]
                        y1  = intensity_array[pos-5]
                        x3  = mz_array[pos+7]
                        y3  = intensity_array[pos+7]
                    try:
                        doubleLog = math.log(y2/y1) / math.log(y3/y1)
                        mue = (doubleLog*( x1*x1 - x3*x3 ) - x1*x1 + x2*x2 ) / (2 * (x2-x1) - 2*doubleLog*(x3-x1))
                        cSquarred = ( x2*x2 - x1*x1 - 2*x2*mue + 2*x1*mue )/ ( 2* math.log(y1/y2 ))
                        A = y1 * math.exp( (x1-mue)*(x1-mue) / ( 2*cSquarred) )
                        
                        #if A > 1e20:
                            #print(mue, A, doubleLog, cSquarred)
                            #print(x1, "\t", y1)
                            #print(x2, "\t", y2)
                            #print(x3, "\t", y3)
                            #print()
                    except:
                        continue
                    tmp.append((mue,A))
            #for mue, A in tmp:
                #print(mue, "\t", A)
            return tmp
        else:
            return self.peaks

    @property
    def xmlTree(self):
        """
        xmlTree property returns an iterator over the original
        xmlTree structure the spectrum was initilized with.

        Example:

        >>> for element in spectrum.xmlTree:
        ...   print( element, element.tag, element.items() )

        please refer to the xml documentation of Python and cElementTree
        for more details.

        """
        return self._xmlTree.getiterator()

    @property
    def tmzSet(self):
        """
        Creates a set out of transformed m/z values (including all values in the defined imprecision).

        :rtype: set
        """
        if self._tmzSet == None:
            self._tmzSet = set()
            for mz, i in self.centroidedPeaks:
                self._tmzSet |= set(
                                    range(
                                            int(round((mz - (mz * self.measuredPrecision)) * self.internalPrecision)),
                                            int(round((mz + (mz * self.measuredPrecision)) * self.internalPrecision)) + 1)

                )
        return self._tmzSet

    @property
    def tmassSet(self):
        '''
        Creates a set out of transformed mass values (including all values in the defined imprecision).

        :rtype: set
        '''
        if self._tmassSet == None:
            self._tmassSet = set(self._transformed_mass_with_error.keys())
        return self._tmassSet

    def deRef( self ):
        """
        Strip some heavy data and return deepcopy of spectrum.

        Example:

        >>> run = pymzml.run.Reader(file_to_read, MS1_Precision = 5e-6, MSn_Precision = 20e-6)
        >>> for spec in run:
        ...     tmp = spec.deRef()

        """
        self.strip()
        return copy.deepcopy(self)

    def reduce(self, mzRange = (None,None) ):
        """
        Works on peaks and reduces spectrum to a m/z range.

        Example:

        >>> run = pymzml.run.Reader(file_to_read, MS1_Precision = 5e-6, MSn_Precision = 20e-6)
        >>> for spec in run:
        ...     spec.reduce( mzRange = (100,200) )

        """
        #NOTE Total ion current should be adjusted as well, I guess ;)
        assert type(mzRange) == type(()), "require tuple of (min,max) mz range to reduce spectrum"
        if mzRange != (None, None):
            tmp_peaks = [ (mz,i) for mz, i in self.peaks if mzRange[0] <= mz <= mzRange[1] ]
            self.clear(scope = 'not_all')
            self.peaks = tmp_peaks
        return self

    def removeNoise(self, mode = 'median', noiseLevel = None):
        """
        Function to remove noise from peaks, centroided peaks and reprofiled
        peaks.

        :param mode: define mode for removing noise. Default = "median"
            (other modes: "mean", "mad")
        :type mode: string
        :rtype: list of tuples
        :return: Returns a list with tuples of m/z-intensity pairs above the
            noise threshold

        mad < median < mean

        Threshold is calculated over the mad/median/mean of all intensity values.
        (mad = mean absolute deviation)

        Example:

        >>> import pymzml
        >>> run = pymzml.run.Reader(spectra.mzML.gz, MS1_Precision = 5e-6, MSn_Precision = 20e-6)
        >>> for spectrum in run:
        ...     for mz, i in spectrum.removeNoise( mode = 'mean'):
        ...         print(mz, i)

        """
        if noiseLevel == None:
            noiseLevel = self.estimatedNoiseLevel(mode = mode)

        if self._peaks != None:
            self.peaks  = [ (mz,i) for mz,i in self.peaks  if i >= noiseLevel]

        if self._centroidedPeaks != None:
            self.centroidedPeaks = [ (mz,i) for mz,i in self.centroidedPeaks  if i >= noiseLevel]

        self._reprofiledPeaks = None
        return self

    def highestPeaks(self, n):
        """
        Function to retrieve the n-highest centroided peaks of the spectrum.

        :param n: Number of n-highest peaks
        :type n: int
        :rtype: list
        :return: list of centroided peaks (mz, intensity tuples)

        Example:

        >>> run = pymzml.run.Reader("../mzML_example_files/deconvolution.mzML.gz", MS1_Precision = 5e-6, MSn_Precision = 20e-6)
        >>> for spectrum in run:
        ...     if spectrum["ms level"] == 2:
        ...         if spectrum["id"] == 1770:
        ...             for mz,i in spectrum.highestPeaks(5):
        ...                print(mz,i)

        """
        if self._centroidedPeaksSortedByI == None:
            self._centroidedPeaksSortedByI = sorted(self.centroidedPeaks, key = itemgetter(1))
        return self._centroidedPeaksSortedByI[-n:]

    def estimatedNoiseLevel(self, mode = 'median'):
        """
        Calculates noise threshold for function :py:func:`removeNoise`
        """
        if self.centroidedPeaks == []:
            return 0

        if 'noiseLevelEstimate' not in self.keys():
            self['noiseLevelEstimate'] = {}
        if mode not in self['noiseLevelEstimate'].keys():
            if mode == 'median':
                self['noiseLevelEstimate']['median'] = self._median([ i for mz, i in self.centroidedPeaks])
            elif mode == 'mad':
                median = self.estimatedNoiseLevel(mode='median')
                self['noiseLevelEstimate']['mad'] = self._median(sorted([ abs(i - median) for mz,i in self.centroidedPeaks]))
            elif mode == 'mean':
                mean = sum([i for mz, i in self.centroidedPeaks]) / float(len(self.centroidedPeaks))
                self['noiseLevelEstimate']['mean'] = mean
                self['noiseLevelEstimate']['variance'] = sum([(i - mean) * (i - mean) for mz, i in self.centroidedPeaks]) / float(len(self.centroidedPeaks))
            else:
                print("dont understand noise level estimation method call", mode, file = sys.stderr)
        return self['noiseLevelEstimate'][mode]

    def _median(self, data):
        if len(data) == 0:
            return None
        data.sort()
        l = len(data)
        if not l % 2:
            median =   (data[int(math.floor(float(l)/float(2)))] + data[int(math.ceil(float(l)/float(2)))] ) / float(2.0)
        else:
            median =  data[int(l/2)]
        return median

    @property
    def reprofiledPeaks(self):
        """
        Returns the reprofiled version of a centroided spectrum.

        :rtype: list of reprofiled mz,i tuples
        :return: Reprofiled peaks as tuple list

        Example:

        >>> import pymzml
        >>> run = pymzml.run.Reader(spectra.mzMl.gz, MS1_Precision = 5e-6, MSn_Precision = 20e-6)
        >>> for spectrum in run:
        ...     for mz, i in spectrum.reprofiledPeaks:
        ...         print(mz, i)

        """
        #NOTE self._reprofiledPeaks is a defaultdict(int) with k:mz, v:i
        if self._reprofiledPeaks == None:
            if self.mz != []:
                self._reprofiledPeaks = self._reprofile_Peaks()
            else:
                self._reprofiledPeaks = ddict(int)
        return sorted(self._reprofiledPeaks.items())

    def _reprofile_Peaks(self):
        """
        Performs reprofiling for property :py:func:`reprofiledPeaks`
        """
        tmp = ddict(int)
        for mz,i in self.centroidedPeaks:
            # Let's say the measured precision is 1 sigma of the signal width, i.e. 68.4%
            s = mz*self.measuredPrecision
            s2 = s*s
            floor  = mz - 5.0*s   # Gauss curve +- 3 sigma
            ceil = mz + 5.0*s
            ip = self.internalPrecision
            for _ in range( int(round(floor*ip)) , int(round(ceil*ip))+1 ):
                if _ % int(5) == 0 :
                    a = float(_)/float(ip)
                    y = i * math.exp( -1 * ((mz - a) * (mz - a))  / (2 * s2) )
                    tmp[ a ] += y
        self['reprofiled'] = True
        return tmp

    @property
    def measuredPrecision(self):
        """
        Sets the measured and internal precision

        :param value: measured precision (e.g. 5e-6)
        :type value: float
        """
        return self._measuredPrecision

    @measuredPrecision.setter
    def measuredPrecision(self, value):
        self._measuredPrecision = value
        self.internalPrecision = int(round(50000.0 / (value * 1e6)))
        return

    def _link(self, idTag=None, value = None, name = None):
        try:
            v = float(value)
        except:
            v = value
        if idTag not in self.keys():
            self[idTag] = v
        else:
            oldValue = self[idTag]
            self[idTag] = [oldValue]
            self[idTag].append(v)
        self[name] = self[idTag]
        return

    def _decode(self):
        """
        Decodes the base 64 encoded and packed strings from the data.

        :rtype: tuple
        :return: Returns the unpacked data as a tuple. Returns an empty list if
            there is no raw data or raises an exception if data could not be
            decoded.

        """
        if 'encodedData' in self.keys():
            compressionStated = True
            n_BinaryArrayOrder = len(self['BinaryArrayOrder'])
            if n_BinaryArrayOrder == 4:
                compressionStated = False

            #
            for pos in range(0, n_BinaryArrayOrder, int(n_BinaryArrayOrder/2)):
                if compressionStated:
                    arrayType, compression, encodingType  = [value for key, value in sorted([self['BinaryArrayOrder'][pos] , self['BinaryArrayOrder'][pos + 1], self['BinaryArrayOrder'][pos + 2]])]
                else:
                    arrayType, encodingType  = [value for key, value in sorted([self['BinaryArrayOrder'][pos] , self['BinaryArrayOrder'][pos + 1]])]
                    compression = 'no'

                if encodingType == '32-bit float':
                    floattype = 'f'
                elif encodingType == '64-bit float':
                    floattype = 'd'
                else:
                    floattype = None
                    print("New data encoding detected, please adjust parser", file = sys.stderr)

                unpackedData = []

                if self['encodedData'][int(pos*0.5)] == None:
                    pass
                elif len(self['encodedData'][int(pos*0.5)]) == 0:
                    pass
                elif len(self['encodedData'][int(pos*0.5)]) != 0:
                    decodedData  = b64dec(self['encodedData'][int(pos*0.5)].encode("utf-8"))
                    if compression == 'zlib':
                        decodedData = zlib.decompress(decodedData)
                    elif compression == 'no':
                        pass
                    else:
                        print("New data compression ({0}) detected, please adjust parser".format(compression), file = sys.stderr)
                        exit(1)
                    fmt = "{endian}{arraylength}{floattype}".format( endian = "<" , arraylength = self['defaultArrayLength'] , floattype = floattype )
                    try:
                        unpackedData = unpack( fmt , decodedData)
                    except: # NOTE raises struct.error, but cannot be checked for here
                        print("Couldn't extract data {0} fmt: {1}".format(arrayType, fmt), file = sys.stderr)
                        print(len(self['encodedData'][int(pos * 0.5)]), file = sys.stderr)
                        exit(1)

                if arrayType == 'mz' or arrayType == 'time':
                    self._mz = unpackedData
                elif arrayType == 'i':
                    self._i = unpackedData
                else:
                    print("Arraytype {0} not supported ...".format(arrayType), file = sys.stderr)
                    exit(1)
        return

    def hasPeak(self, mz2find):
        """
        Checks if a Spectrum has a certain peak.
        Needs a certain mz value as input and returns a list of peaks if a peak
        is found in the spectrum, otherwise ``[]`` is returned.
        Every peak is a tuple of m/z and intensity.

        :param mz2find: mz value which should be found
        :type mz2find: float
        :rtype: list
        :return: m/z and intensity as tuple in list

        Example:

        >>> import pymzml, get_example_file
        >>> example_file = get_example_file.open_example('deconvolution.mzML.gz')
        >>> run = pymzml.run.Reader(example_file, MS1_Precision = 5e-6, MSn_Precision = 20e-6)
        >>> for spectrum in run:
        ...     if spectrum["ms level"] == 2:
        ...             peak_to_find = spectrum.hasPeak(1016.5404)
        ...             print(peak_to_find)
        [(1016.5404, 19141.735187697403)]

        """
        value = self.transformMZ(mz2find)
        return self._transformed_mz_with_error[value]

        # NOTE this can return a result if a peak is found within 20.08 ppm (for a 20 ppm spectrum) ...

    def hasDeconvolutedPeak(self, mass2find):
        """
        Checks if a deconvoluted spectrum contains a certain peak.
        Needs a mass value as input and returns a list of peaks if a peak
        is found in the spectrum. If the mass is not found ``[]`` is
        returned.
        Every peak is a tuple of m/z and intensity.

        :param mass2find: mass value which should be found
        :type mass2find: float
        :rtype: list
        :return: mass and intensity as tuple in list if mass is found,
            otherwise ``[]``

        Example:

        >>> import pymzml, get_example_file
        >>> example_file = get_example_file.open_example('deconvolution.mzML.gz')
        >>> run = pymzml.run.Reader(example_file, MS1_Precision = 5e-6, MSn_Precision = 20e-6)
        >>> for spectrum in run:
        ...     if spectrum["ms level"] == 2:
        ...             peak_to_find = spectrum.hasDeconvolutedPeak(1044.5804)
        ...             print(peak_to_find)
        [(1044.5596, 3809.4356300564586)]

        """
        value = self.transformMZ(mass2find)
        return self._transformed_mass_with_error[value]

    @property
    def _transformed_mz_with_error(self):
        """
        Returns transformed m/z value with error

        :rtype: dictionary
        :return: Transformed m/z values in dictionary {m/z_with_error :
            [(m/z,intensity), ...], ...}

        """
        if self._transformedMzWithError == None:
            self._transformedMzWithError = ddict(list)
            for mz, i in self.centroidedPeaks:
                for t_mz_with_error in range(int(round((mz - (mz * self.measuredPrecision)) * self.internalPrecision)),
                                             int(round((mz + (mz * self.measuredPrecision)) * self.internalPrecision)) + 1):
                    self._transformedMzWithError[t_mz_with_error].append((mz, i))
        return self._transformedMzWithError

    @property
    def _transformed_mass_with_error(self):
        """
        Returns transformed mass value with error

        :rtype: dictionary
        :return: Transformed mass values in dictionary {mass_with_error:
            (mass,intensity), ...}

        """
        if self._transformedMassWithError == None:
            self._transformedMassWithError = ddict(list)
            for mass, i in self.deconvolutedPeaks:
                for t_mass_with_error in range(int(round((mass - (mass * self.measuredPrecision)) * self.internalPrecision)),
                                               int(round((mass + (mass * self.measuredPrecision)) * self.internalPrecision)) + 1):
                    self._transformedMassWithError[t_mass_with_error].append((mass, i))
        return self._transformedMassWithError

    @property
    def transformedPeaks(self):
        """
        m/z value is multiplied by the internal precision

        :rtype: list of tuples
        :return: Returns a list of peaks (tuples of mz and intensity). Float m/z
            values are adjusted by the internal precision to integers.

        """
        if self._transformedPeaks == None:
            self._transformedPeaks = [(self.transformMZ(mz), i) for mz, i in self.centroidedPeaks]
        return self._transformedPeaks

    @property
    def transformed_deconvolutedPeaks(self):
        """
        Deconvoluted mz value is multiplied by the internal precision

        :rtype: list of tuples
        :return: Returns a list of peaks (tuples of mz and intensity). Float m/z
            values are adjusted by the internal precision to integers.

        """
        if self._transformed_deconvolutedPeaks == None:
            self._transformed_deconvolutedPeaks = [(self.transformMZ(mass), i) for mass, i in self.deconvolutedPeaks]
        return self._transformed_deconvolutedPeaks

    def _mz2mass(self, mz, charge):
        """
        Calculate the uncharged mass for a given mz value

        :param mz: m/z value
        :type mz: float
        :param charge: charge
        :type charge: int
        :rtype: float
        :return: Returns mass of a given m/z value
        """
        return ((mz - PROTON) * charge)

    def _group(self, peaks):
        """
        Group mz (or mass) values according to the given ppm value. The mean
        value of grouped peaks is stored. When an intensity tuple is given, the
        corresponding intensity are summed up and stored.

        :rtype: list
        :return: list of peaks

        """
        mz_tuple, intensity_tuple = zip(*peaks)

        count_ungrouped = 0
        mz_list_grouped = []
        i = 0
        # iterate over all entries for grouping
        while i < len(mz_tuple):
            target =  self.ppm2abs(mz_tuple[i], self.measuredPrecision, 1, 1)
            j = i + 1
            while j < len(mz_tuple) and mz_tuple[j] <= target:
                j += 1
            j = j- 1
            if i == j:
                # no peaks have to be grouped, just add the current peak to the result and go in with the next peak
                mz_list_grouped.append(tuple([mz_tuple[i], intensity_tuple[i]]))
                i += 1
            else:
                # potential overlapping peaks are found.
                # check wether the mz value of the j index does not overlap with the next j+1 index
                k = j + 1
                group = True
                if k < len(mz_tuple):
                    target_new = self.ppm2abs(mz_tuple[j], self.measuredPrecision, 1, 1)
                    if target_new >= mz_tuple[k]:
                        group = False

                if group:
                    # group the peaks, calculate mean
                    mean = sum(mz_tuple[i:j+1])/len(mz_tuple[i:j+1])
                    intensity_sum = sum(intensity_tuple[i:j+1])
                    mz_list_grouped.append(tuple([mean, intensity_sum]))
                    i = j + 1
                else:
                    # peaks are ambigious, no grouping is applied --> every peak is stored
                    # this incident is counted.
                    count_ungrouped += j - i
                    # adding each element between i and j
                    for k in range(i, j + 1):
                        mz_list_grouped.append(tuple([mz_tuple[k], intensity_tuple[k]]))
                    i = j + 1

        if count_ungrouped:
            # if ungrouped entries occured, this is reported
            print('{0} elements could not be grouped due to an overlap.'.format(count_ungrouped), file = sys.stderr)
        return mz_list_grouped

    def _get_deisotopedMZ_for_chargeDeconvolution(self, ppmFactor = 4, minCharge = 1, maxCharge = 8, maxNextPeaks = 100):
        """
        Calculates the deisotoped m/z value as an input for the charge deconvolution

        :param ppmFactor: ppm factor
        :type ppmFactor: int
        :param minCharge: minimum charge considered
        :type minCharge: int
        :param maxCharge: maximum charge considered
        :type maxCharge: int
        :param maxNextPeaks: maximum length for isotope envelope
        :type maxNextPaks: int

        :rtype: list of tuples
        :return: Monoisotopic peak [(m/z, intensity_sum, charge, found),...]

        .. note::

           The argument *maxNextPeaks* is just to make sure that the isotope
           envelope doesnt get too long. This limit is not reached usually.

        """
        try:
            mz, intensities = zip(*self.centroidedPeaks)
        except ValueError:
            #empty spectrum
            exit()
            mz = []
            intensities = []

        monoisotopicPeaks = []
        length = len(mz)
        override = False
        for i in range(length):
            for charge in range(maxCharge, minCharge - 1, -1):
                # check absence of isotope envelope peaks before the current peak
                #print("Analyzing mz, charge:", mz[i], charge)
                found = False
                if i == 0:
                    # the current peak is the first peak, no preceding peak is available, so this is a monoisotopic candidate
                    pass
                else:
                    j = i - 1
                    target = mz[i] - ISOTOPE_AVERAGE_DIFFERENCE / charge
                    target_min = self.ppm2abs(target, self.measuredPrecision, -1, ppmFactor) # min and max should be calculated in one step (so that self.ppm() is not called twice)
                    target_max = self.ppm2abs(target, self.measuredPrecision, 1, ppmFactor)
                    while j >= 0 and mz[j] >= target_min:
                        if mz[j] <= target_max:
                            found = True
                            # Found preceeding peak, break goes to the next peak
                            break
                        j = j - 1

                # if a potential preceding peak for the current peak is found, jump to the next peak
                if found:
                    break
                ''' check presence of isotope envelope after the current peak'''
                found = 1
                intensity_sum = intensities[i]
                local_max = False
                for i_envelope in range(1, maxNextPeaks + 1):
                    k = i + 1
                    if (i + i_envelope) >= len(mz):
                        break
                    target = mz[i] + (ISOTOPE_AVERAGE_DIFFERENCE * i_envelope)/ charge
                    target_min = self.ppm2abs(target, self.measuredPrecision, -1, 1)
                    target_max = self.ppm2abs(target, self.measuredPrecision, 1, 1)
                    while k < length and mz[k] <= target_max:
                        if mz[k] >= target_min:
                            if intensities[k] < intensities[k-1]:
                                local_max = True
                            elif local_max and intensities[k] > intensities[k-1]:
                                # this would be a second local max, so this is no longer considered in the isotope envelope
                                break
                            found += 1
                            #print(mz[k])
                            intensity_sum += intensities[k]
                            # go to next k and reset the target
                            k += 1
                            if not k >= length:
                                target = mz[k] + ISOTOPE_AVERAGE_DIFFERENCE / charge
                                target_min = self.ppm2abs(target, self.measuredPrecision, -1, 1)
                                target_max = self.ppm2abs(target, self.measuredPrecision, 1, 1)
                        else:
                            k += 1
                    if found <= i_envelope:
                        break
                        # an isotope envelope is not supposed to have missing peaks

                if found > 1:
                    monoisotopicPeaks.append(tuple([mz[i], intensity_sum, charge, found]))
                    break
                    # as the first peak of the isotope envelope is added here, this is a monoisotopic peak.
                    # the charge derived from the isotope envelope is the highest charge which is possible.
        return monoisotopicPeaks

    @property
    def deconvolutedPeaks(self):
        """
        Calling :py:func:`spec.Spectrum.deconvolute_peaks` with standard
        parameters, which calculates uncharged masses and returns deconvoluted
        peaks.

        :rtype: list
        :return: list of deconvoluted peaks (mass (instead of m/z) / intensity tuples)

        """
        if self._deconvolutedPeaks == None:
            self._deconvolutedPeaks = self.deconvolute_peaks(ppmFactor = 4, minCharge = 1, maxCharge = 8, maxNextPeaks = 100)
        return self._deconvolutedPeaks

    def deconvolute_peaks(self, ppmFactor = 4, minCharge = 1, maxCharge = 8, maxNextPeaks = 100):
        """
        Calculating uncharged masses and returning deconvoluted peaks.

        The deconvolution of spectra is done by first identifying isotope envelopes and
        the charge state of this envelopes. The first peak of an isotope envelope is choosen
        as the monoisotopic peak for which the mass is calculated from the m/z ratio.
        Isotope envelopes are identified by searching the centroided spectrum for peaks
        which show no preceding isotope peak within a specified mass accuracy. To be
        sure, the measured mass accuracy is multiplied by a user adjustable factor
        (``ppmFactor``). When the current peak meets the criteria with no preceding peaks, the
        following peaks are analysed. The following peaks are considered to be part of
        the isotope envelope, as long as they fit within the measured precision and
        only one local maximum is present. The second local maximum is not considered
        as the starting point of a new isotope envelope as one cannot be sure were this
        isotope envelope starts. However, the last peak before the second local maximum
        is considered to be part of the isotope envelope from the first local maximum,
        as the intensity of this peak shouldn't have a big influence on the whole
        isotope envelope intensity.
        The charge range for detecting isotope envelopes can be specified (``minCharge``,
        ``maxCharge``). An isotope envelope always gets the highest possible charge.
        With the charge the mass can be calculated from the m/z value of the first peak
        of the isotope envelope. The intensity of the deconvoluted peak results from
        the sum of all isotope envelope peaks.
        In a last step, deconvoluted peaks are grouped together within the measured
        precision. This is necessary because isotope envelopes from the same fragment
        but with different charge states can leed to slightly different deconvoluted
        peaks.

        :param ppmFactor: ppm factor (imprecision factor)
        :type ppmFactor: int
        :param minCharge: minimum charge considered
        :type minCharge: int
        :param maxCharge: maximum charge considered
        :type maxCharge: int
        :param maxNextPeaks: maximum length for isotope envelope
        :type maxNextPaks: int

        :rtype: tuple (mass, intensity)
        :return: Deconvoluted peaks, mass (instead of m/z) and intensity are
            returned

        """
        if self.measuredPrecision > 50e-6:
            print("{0} ppm is too high for deconvolution. Please make sure to use spectra with < 50 ppm.".format(self.measuredPrecision * 1e6), file = sys.stderr)
            exit(1)

        # calculate monoisotopic m/z and charge
        interestingPeaks = self._get_deisotopedMZ_for_chargeDeconvolution(ppmFactor, minCharge, maxCharge, maxNextPeaks)

        # charge deconvolution
        result = []
        for mz, intensity, charge, n in interestingPeaks:
            mass = self._mz2mass(mz, charge)
            result.append(tuple([mass, intensity]))

        # sort the result corresponding to the mass (due to the mz to mass conversion, the values are no longer sorted)
        result = sorted(result)

        # check on empty result list
        if len(result) == 0:
            # no peaks could be identified for charge deconvolution.
            return []

        # group peaks
        return self._group(result)

    def ppm2abs(self, value, ppmValue, direction = 1, factor = 1):
        '''
        Returns the value plus (or minus, dependent on direction) the
        imprecession for this value.

        :param value: m/z value
        :type value: float
        :param ppmvalue: ppm value
        :type ppmvalue: int
        :param direction: plus or minus the considered m/z value. The argument
            *direction* should be 1 or -1
        :type direction: int
        :param factor: multiplication factor for the imprecision.The argument
            *factor* should be bigger than 0.
        :type factor: int
        :rtype: float
        :return: imprecision for a given value

        '''
        result = value + (value * (ppmValue * factor)) * direction
        return result

    def hasOverlappingPeak(self, mz):
        """
        Checks if a spetrum has more than one peak for a given m/z value and within the measured precision

        :param mz: m/z value which should be checked
        :type mz: float
        :return: Returns ``True`` if a nearby peak is detected, otherwise ``False``
        :rtype: bool
        """
        for minus_or_plus in [-1, 1]:
            target = self.ppm2abs(mz, self.measuredPrecision, minus_or_plus, 1)
            temp = self.hasPeak(self.ppm2abs(mz, self.measuredPrecision) )
            if temp and len(temp) > 1:
                return True
        return False

    def similarityTo(self,spec2):
        """
        Compares two spectra and returns cosine

        :param spec2: another pymzml spectrum that is compated to the current spectrum.
        :type spec2: pymzml.spec.Spectrum
        :return: value between 0 and 1, i.e. the cosine between the two spectra.
        :rtype: float

        .. note::
            Spectra data is transformed into an n-dimensional vector,
            whereas mz values are binned in bins of 10 m/z and the intensities are added up.
            Then the cosine is calculated between those two vectors.
            The more similar the specs are, the closer the value is to 1.

        """
        assert isinstance(spec2,Spectrum) , "Spectrum2 is not a pymzML spectrum"

        vector1 = ddict(int)
        vector2 = ddict(int)
        mzs = set()
        for mz, i in self.peaks:
            vector1[round(mz,1)] += i
            mzs.add(round(mz,1))
        for mz, i in spec2.peaks:
            vector2[round(mz,1)] += i
            mzs.add(round(mz,1))

        z = 0
        n_v1 = 0
        n_v2 = 0

        for mz in mzs:
            int1 = vector1[mz]
            int2 = vector2[mz]
            z += int1*int2
            n_v1 += int1*int1
            n_v2 += int2*int2
        try:
            cosine = z / (math.sqrt(n_v1) * math.sqrt(n_v2))
        except:
            cosine = 0.0
        return cosine


    def transformMZ(self, value):
        """
        pymzml uses an internal precision to different tasks. This precision depends on the
        measured prescision and is calculated when :py:func:`spec.Spectrum.measuredPrecision` is invoked.
        transformMZ can be used to transform mz values into the internal standard.

        :param value: mz value
        :type value: float
        :return: transformed value
        :rtype: float

        this value can be used to probe internal dictionaries, lists or sets, e.g. spectrum.tmzSet.

        Example:

        >>> import pymzml
        >>> mzValues_to_test = set()
        >>> run = pymzml.run.Reader( "test.mzML.gz" , MS1_Precision = 5e-6, MSn_Precision = 20e-6)
        >>>
        >>> for spectrum in run:
        ...     if spectrum["ms level"] == 2:
        ...             peak_to_find = spectrum.hasDeconvolutedPeak(1044.5804)
        ...             print(peak_to_find)
        [(1044.5596, 3809.4356300564586)]

        """
        return int(round(value * self.internalPrecision))

    def initFromTreeObject(self,treeObject):
        """
        treeObject.get('nativeID')
        print(treeObject)
        print(treeObject.items())
        for _ in treeObject.getiterator():
            print(_.tag,_.items())
        """
        self.clear()
        self._xmlTree = treeObject
        #
        if treeObject.tag.endswith('}chromatogram'):
            self['id'] = treeObject.get('id')
            self['ms level'] = None
        else:
            try:
                '''
                1.1.0  >> <spectrum id="spectrum=1019" index="8" defaultArrayLength="431">
                1.1.0  >> <spectrum id="scan=3" index="0" sourceFileRef="SF1" defaultArrayLength="92">
                1.0.0  >> <spectrum index="317" id="S318" nativeID="318" defaultArrayLength="34">
                0.99.1 >> <spectrum id="S20" scanNumber="20" msLevel="2">
                so far regex hold for this ...
                '''
                self['id'] = int(re.search( r'[0-9]*$',   treeObject.get('id')  ).group())
            except:
                self['id'] = None

        self['defaultArrayLength'] = int(treeObject.get('defaultArrayLength'))
        for element in treeObject.getiterator():
            accession = element.get('accession')
            self.ms[accession] = element
            if element.tag.endswith('cvParam'):
                if accession in self.param['accessions'].keys():
                    for mzmlTag in self.param['accessions'][accession]['valuesToExtract']:
                        try:
                            self._link(idTag = accession,
                                       value = element.get(mzmlTag),
                                       name  = self.param['accessions'][accession]['name']
                            )
                        except KeyError:
                            if mzmlTag == 'unitName':
                                continue
                                # this allows parsing of mzML files generated with ProteomeDiscoverer
                            else:
                                print("kind of 'unitName' issue again ... with {0}".format(mzmlTag))
                                exit()

                    if  self.param['accessions'][accession]['name'] == 'intensity array':
                        self['BinaryArrayOrder'].append(('arrayType', 'i'))

                    elif self.param['accessions'][accession]['name'] == 'm/z array':
                        self['BinaryArrayOrder'].append(('arrayType', 'mz'))

                    elif self.param['accessions'][accession]['name'] == 'time array':
                        self['BinaryArrayOrder'].append(('arrayType', 'time'))

                    elif self.param['accessions'][accession]['name'] == '32-bit float':
                        self['BinaryArrayOrder'].append(('encoding', '32-bit float'))

                    elif self.param['accessions'][accession]['name'] == '64-bit float':
                        self['BinaryArrayOrder'].append(('encoding', '64-bit float'))

                    elif self.param['accessions'][accession]['name'] == 'zlib compression':
                        self['BinaryArrayOrder'].append(('compression', 'zlib'))

                    elif self.param['accessions'][accession]['name'] == 'no compression':
                        self['BinaryArrayOrder'].append(('compression', 'no'))

            elif element.tag.endswith('precursorList'):
                self['precursors'] = []

            elif element.tag.endswith('selectedIon'):
                self['precursors'].append({'mz': None, 'charge': None})
                for subElement in element.getiterator():
                    if subElement.tag.endswith('cvParam'):
                        accession = subElement.get('accession')
                        if accession == 'MS:1000040':
                            try:
                                self['precursors'][-1]['mz'] = float(subElement.get('value'))
                            except ValueError:
                                self['precursors'][-1]['mz'] = subElement.get('value')
                        elif accession == 'MS:1000041':
                            try:
                                self['precursors'][-1]['charge'] = int(subElement.get('value'))
                            except ValueError:
                                self['precursors'][-1]['charge'] = subElement.get('value')
                        elif accession == 'MS:1000744':
                            try:
                                self['precursors'][-1]['mz'] = float(subElement.get('value'))
                            except ValueError:
                                self['precursors'][-1]['mz'] = subElement.get('value')
                        else:
                            pass

            elif element.tag.endswith('binary'):
                 self._link(    idTag = 'PY:0000000',
                                value = element.text,
                                name  = 'encodedData'
                    )

        try:
            if self['ms level'] == 1:
                self.measuredPrecision = self.param['MS1_Precision']
            else:
                self.measuredPrecision = self.param['MSn_Precision']
        except KeyError:
            pass

        return


if __name__ == '__main__':
    print(__doc__)