/usr/share/pyshared/neo/io/axonio.py is in python-neo 0.3.3-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 | # -*- coding: utf-8 -*-
"""
Classe for reading data from pCLAMP and AxoScope
files (.abf version 1 and 2), developed by Molecular device/Axon technologies.
- abf = Axon binary file
- atf is a text file based format from axon that could be read by AsciiIO (but this file is less efficient.)
This code is a port of abfload and abf2load
written in Matlab (BSD-2-Clause licence) by :
- Copyright (c) 2009, Forrest Collman, fcollman@princeton.edu
- Copyright (c) 2004, Harald Hentschke
and available here : http://www.mathworks.com/matlabcentral/fileexchange/22114-abf2load
Information on abf 1 and 2 formats is available here : http://www.moleculardevices.com/pages/software/developer_info.html
This file supports the old (ABF1) and new (ABF2) format.
ABF1 (clampfit <=9) and ABF2 (clampfit >10)
All possible mode are possible :
- event-driven variable-length mode (mode 1) -> return several Segment in the Block
- event-driven fixed-length mode (mode 2 or 5) -> return several Segment in the Block
- gap free mode -> return one (or sevral) Segment in the Block
Supported : Read
Author: sgarcia, jnowacki
Note: j.s.nowacki@gmail.com has a C++ library with SWIG bindings which also reads
abf files - would be good to cross-check
"""
import datetime
import os
import struct
# file no longer exists in Python3
try:
file
except NameError:
import io
file = io.BufferedReader
import numpy as np
import quantities as pq
from neo.io.baseio import BaseIO
from neo.core import Block, Segment, AnalogSignal, EventArray
from neo.io.tools import create_many_to_one_relationship, iteritems
class struct_file(file):
def read_f(self, fmt , offset = None):
if offset is not None:
self.seek(offset)
return struct.unpack(fmt , self.read(struct.calcsize(fmt)))
def write_f(self, fmt , offset = None , *args ):
if offset is not None:
self.seek(offset)
self.write( struct.pack( fmt , *args ) )
def reformat_integer_V1(data, nbchannel , header):
"""
reformat when dtype is int16 for ABF version 1
"""
for i in range(nbchannel):
data[:,i] /= header['fInstrumentScaleFactor'][i]
data[:,i] /= header['fSignalGain'][i]
data[:,i] /= header['fADCProgrammableGain'][i]
if header['nTelegraphEnable'][i] :
data[:,i] /= header['fTelegraphAdditGain'][i]
data[:,i] *= header['fADCRange']
data[:,i] /= header['lADCResolution']
data[:,i] += header['fInstrumentOffset'][i]
data[:,i] -= header['fSignalOffset'][i]
def reformat_integer_V2(data, nbchannel , header):
"""
reformat when dtype is int16 for ABF version 2
"""
for i in range(nbchannel):
data[:,i] /= header['listADCInfo'][i]['fInstrumentScaleFactor']
data[:,i] /= header['listADCInfo'][i]['fSignalGain']
data[:,i] /= header['listADCInfo'][i]['fADCProgrammableGain']
if header['listADCInfo'][i]['nTelegraphEnable'] :
data[:,i] /= header['listADCInfo'][i]['fTelegraphAdditGain']
data[:,i] *= header['protocol']['fADCRange']
data[:,i] /= header['protocol']['lADCResolution']
data[:,i] += header['listADCInfo'][i]['fInstrumentOffset']
data[:,i] -= header['listADCInfo'][i]['fSignalOffset']
def clean_string(s):
while s.endswith('\x00') :
s = s[:-1]
while s.endswith(' ') :
s = s[:-1]
return s
class AxonIO(BaseIO):
"""
Class for reading abf (axon binary file) file.
Usage:
>>> from neo import io
>>> r = io.AxonIO(filename='File_axon_1.abf')
>>> bl = r.read_block(lazy=False, cascade=True)
>>> print bl.segments
[<neo.core.segment.Segment object at 0x105516fd0>]
>>> print bl.segments[0].analogsignals
[<AnalogSignal(array([ 2.18811035, 2.19726562, 2.21252441, ..., 1.33056641,
1.3458252 , 1.3671875 ], dtype=float32) * pA, [0.0 s, 191.2832 s], sampling rate: 10000.0 Hz)>]
>>> print bl.segments[0].eventarrays
[]
"""
is_readable = True
is_writable = False
supported_objects = [ Block , Segment , AnalogSignal , EventArray ]
readable_objects = [ Block ]
writeable_objects = [ ]
has_header = False
is_streameable = False
read_params = { Block : [ ] }
write_params = None
name = 'Axon'
extensions = [ 'abf' ]
mode = 'file'
def __init__(self , filename = None) :
"""
This class read a abf file.
Arguments:
filename : the filename to read
"""
BaseIO.__init__(self)
self.filename = filename
def read_block(self, lazy = False, cascade = True ):
header = self.read_header()
version = header['fFileVersionNumber']
bl = Block()
bl.file_origin = os.path.basename(self.filename)
bl.annotate(abf_version = version)
# date and time
if version <2. :
YY = 1900
MM = 1
DD = 1
hh = int(header['lFileStartTime']/3600.)
mm = int((header['lFileStartTime']-hh*3600)/60)
ss = header['lFileStartTime']-hh*3600-mm*60
ms = int(np.mod(ss,1)*1e6)
ss = int(ss)
elif version >=2. :
YY = int(header['uFileStartDate']/10000)
MM = int((header['uFileStartDate']-YY*10000)/100)
DD = int(header['uFileStartDate']-YY*10000-MM*100)
hh = int(header['uFileStartTimeMS']/1000./3600.)
mm = int((header['uFileStartTimeMS']/1000.-hh*3600)/60)
ss = header['uFileStartTimeMS']/1000.-hh*3600-mm*60
ms = int(np.mod(ss,1)*1e6)
ss = int(ss)
bl.rec_datetime = datetime.datetime( YY , MM , DD , hh , mm , ss , ms)
if not cascade:
return bl
# file format
if header['nDataFormat'] == 0 :
dt = np.dtype('i2')
elif header['nDataFormat'] == 1 :
dt = np.dtype('f4')
if version <2. :
nbchannel = header['nADCNumChannels']
headOffset = header['lDataSectionPtr']*BLOCKSIZE+header['nNumPointsIgnored']*dt.itemsize
totalsize = header['lActualAcqLength']
elif version >=2. :
nbchannel = header['sections']['ADCSection']['llNumEntries']
headOffset = header['sections']['DataSection']['uBlockIndex']*BLOCKSIZE
totalsize = header['sections']['DataSection']['llNumEntries']
data = np.memmap(self.filename , dt , 'r',
shape = (totalsize,) , offset = headOffset)
# 3 possible modes
if version <2. :
mode = header['nOperationMode']
elif version >=2. :
mode = header['protocol']['nOperationMode']
#~ print 'mode' , mode
if (mode == 1) or (mode == 2) or (mode == 5) or (mode == 3):
# event-driven variable-length mode (mode 1)
# event-driven fixed-length mode (mode 2 or 5)
# gap free mode (mode 3) can be in several episod (strange but possible)
# read sweep pos
if version <2. :
nbepisod = header['lSynchArraySize']
offsetEpisod = header['lSynchArrayPtr']*BLOCKSIZE
elif version >=2. :
nbepisod = header['sections']['SynchArraySection']['llNumEntries']
offsetEpisod = header['sections']['SynchArraySection']['uBlockIndex']*BLOCKSIZE
if nbepisod>0:
episodArray = np.memmap(self.filename , [('offset','i4'), ('len', 'i4') ] , 'r',
shape = (nbepisod),
offset = offsetEpisod )
else:
episodArray = np.empty( (1) , [('offset','i4'), ('len', 'i4') ] ,)
episodArray[0]['len'] = data.size
episodArray[0]['offset'] = 0
# sampling_rate
if version <2. :
sampling_rate = 1./(header['fADCSampleInterval']*nbchannel*1.e-6) * pq.Hz
elif version >=2. :
sampling_rate = 1.e6/header['protocol']['fADCSequenceInterval'] * pq.Hz
# construct block
# one sweep = one segment in a block
pos = 0
for j in range(episodArray.size):
seg = Segment(index = j)
length = episodArray[j]['len']
if version <2. :
fSynchTimeUnit = header['fSynchTimeUnit']
elif version >=2. :
fSynchTimeUnit = header['protocol']['fSynchTimeUnit']
if (fSynchTimeUnit != 0) and (mode == 1) :
length /= fSynchTimeUnit
subdata = data[pos:pos+length]
pos += length
subdata = subdata.reshape( (subdata.size/nbchannel, nbchannel )).astype('f')
if dt == np.dtype('i2'):
if version <2. :
reformat_integer_V1(subdata, nbchannel , header)
elif version >=2. :
reformat_integer_V2(subdata, nbchannel , header)
for i in range(nbchannel):
if version <2. :
name = header['sADCChannelName'][i].replace('\x00','')
unit = header['sADCUnits'][i].replace('\xb5', 'u').replace('\x00','')#\xb5 is µ
num = header['nADCPtoLChannelMap'][i]
elif version >=2. :
name = header['listADCInfo'][i]['ADCChNames'].replace('\x00','')
unit = header['listADCInfo'][i]['ADCChUnits'].replace('\xb5', 'u').replace('\x00','')#\xb5 is µ
num = header['listADCInfo'][i]['nADCNum']
t_start = float(episodArray[j]['offset'])/sampling_rate
t_start = t_start.rescale('s')
try:
pq.Quantity(1, unit)
except:
#~ print 'bug units', i, unit
unit = ''
if lazy:
signal = [ ] * pq.Quantity(1, unit)
else:
signal = subdata[:,i] * pq.Quantity(1, unit)
anaSig = AnalogSignal(signal, sampling_rate=sampling_rate,
t_start=t_start, name=str(name),
channel_index=int(num))
if lazy:
anaSig.lazy_shape = subdata.shape[0]
seg.analogsignals.append( anaSig )
bl.segments.append(seg)
if mode in [3,5]:# TODO check if tags exits in other mode
# tag is EventArray that should be attached to Block
# It is attched to the first Segment
times = [ ]
labels = [ ]
comments = [ ]
for i,tag in enumerate(header['listTag']) :
times.append(tag['lTagTime']/sampling_rate )
labels.append( str(tag['nTagType']) )
comments.append(clean_string(tag['sComment']))
times = np.array(times)
labels = np.array(labels, dtype='S')
comments = np.array(comments, dtype='S')
# attach all tags to the first segment.
seg = bl.segments[0]
if lazy :
ea = EventArray( times =[ ] * pq.s , labels=np.array([ ], dtype = 'S'))
ea.lazy_shape = len(times)
else:
ea = EventArray( times = times*pq.s, labels = labels, comments = comments )
seg.eventarrays.append(ea)
create_many_to_one_relationship(bl)
return bl
def read_header(self, ):
"""
read the header of the file
The strategy differ here from the original script under Matlab.
In the original script for ABF2, it complete the header with informations
that are located in other structures.
In ABF2 this function return header with sub dict :
sections (ABF2)
protocol (ABF2)
listTags (ABF1&2)
listADCInfo (ABF2)
listDACInfo (ABF2)
dictEpochInfoPerDAC (ABF2)
that contain more information.
"""
fid = struct_file(self.filename,'rb')
# version
fFileSignature = fid.read(4)
if fFileSignature == 'ABF ' :
headerDescription = headerDescriptionV1
elif fFileSignature == 'ABF2' :
headerDescription = headerDescriptionV2
else :
return None
# construct dict
header = { }
for key, offset , fmt in headerDescription :
val = fid.read_f(fmt , offset = offset)
if len(val) == 1:
header[key] = val[0]
else :
header[key] = np.array(val)
# correction of version number and starttime
if fFileSignature == 'ABF ' :
header['lFileStartTime'] = header['lFileStartTime'] + header['nFileStartMillisecs']*.001
elif fFileSignature == 'ABF2' :
n = header['fFileVersionNumber']
header['fFileVersionNumber'] = n[3]+0.1*n[2]+0.01*n[1]+0.001*n[0]
header['lFileStartTime'] = header['uFileStartTimeMS']*.001
if header['fFileVersionNumber'] < 2. :
# tags
listTag = [ ]
for i in range(header['lNumTagEntries']) :
fid.seek(header['lTagSectionPtr']+i*64)
tag = { }
for key, fmt in TagInfoDescription :
val = fid.read_f(fmt )
if len(val) == 1:
tag[key] = val[0]
else :
tag[key] = np.array(val)
listTag.append(tag)
header['listTag'] = listTag
elif header['fFileVersionNumber'] >= 2. :
# in abf2 some info are in other place
# sections
sections = { }
for s,sectionName in enumerate(sectionNames) :
uBlockIndex,uBytes,llNumEntries= fid.read_f( 'IIl' , offset = 76 + s * 16 )
sections[sectionName] = { }
sections[sectionName]['uBlockIndex'] = uBlockIndex
sections[sectionName]['uBytes'] = uBytes
sections[sectionName]['llNumEntries'] = llNumEntries
header['sections'] = sections
# strings sections
# hack for reading channels names and units
fid.seek(sections['StringsSection']['uBlockIndex']*BLOCKSIZE)
bigString = fid.read(sections['StringsSection']['uBytes'])
goodstart = bigString.lower().find('clampex')
if goodstart == -1 :
goodstart = bigString.lower().find('axoscope')
bigString = bigString[goodstart:]
strings = bigString.split('\x00')
# ADC sections
header['listADCInfo'] = [ ]
for i in range(sections['ADCSection']['llNumEntries']) :
# read ADCInfo
fid.seek(sections['ADCSection']['uBlockIndex']*\
BLOCKSIZE+sections['ADCSection']['uBytes']*i)
ADCInfo = { }
for key, fmt in ADCInfoDescription :
val = fid.read_f(fmt )
if len(val) == 1:
ADCInfo[key] = val[0]
else :
ADCInfo[key] = np.array(val)
ADCInfo['ADCChNames'] = strings[ADCInfo['lADCChannelNameIndex']-1]
ADCInfo['ADCChUnits'] = strings[ADCInfo['lADCUnitsIndex']-1]
header['listADCInfo'].append( ADCInfo )
# protocol sections
protocol = { }
fid.seek(sections['ProtocolSection']['uBlockIndex']*BLOCKSIZE)
for key, fmt in protocolInfoDescription :
val = fid.read_f(fmt )
if len(val) == 1:
protocol[key] = val[0]
else :
protocol[key] = np.array(val)
header['protocol'] = protocol
# tags
listTag = [ ]
for i in range(sections['TagSection']['llNumEntries']) :
fid.seek(sections['TagSection']['uBlockIndex']*\
BLOCKSIZE+sections['TagSection']['uBytes']*i)
tag = { }
for key, fmt in TagInfoDescription :
val = fid.read_f(fmt )
if len(val) == 1:
tag[key] = val[0]
else :
tag[key] = np.array(val)
listTag.append(tag)
header['listTag'] = listTag
# DAC sections
header['listDACInfo'] = [ ]
for i in range(sections['DACSection']['llNumEntries']) :
# read DACInfo
fid.seek(sections['DACSection']['uBlockIndex']*\
BLOCKSIZE+sections['DACSection']['uBytes']*i)
DACInfo = { }
for key, fmt in DACInfoDescription :
val = fid.read_f(fmt )
if len(val) == 1:
DACInfo[key] = val[0]
else :
DACInfo[key] = np.array(val)
DACInfo['DACChNames'] = strings[DACInfo['lDACChannelNameIndex']-1]
DACInfo['DACChUnits'] = strings[DACInfo['lDACChannelUnitsIndex']-1]
header['listDACInfo'].append( DACInfo )
# EpochPerDAC sections
# header['dictEpochInfoPerDAC'] is dict of dicts:
# - the first index is the DAC number
# - the second index is the epoch number
# It has to be done like that because data may not exist and may not be in sorted order
header['dictEpochInfoPerDAC'] = { }
for i in range(sections['EpochPerDACSection']['llNumEntries']) :
# read DACInfo
fid.seek(sections['EpochPerDACSection']['uBlockIndex']*\
BLOCKSIZE+sections['EpochPerDACSection']['uBytes']*i)
EpochInfoPerDAC = { }
for key, fmt in EpochInfoPerDACDescription :
val = fid.read_f(fmt )
if len(val) == 1:
EpochInfoPerDAC[key] = val[0]
else :
EpochInfoPerDAC[key] = np.array(val)
DACNum = EpochInfoPerDAC['nDACNum']
EpochNum = EpochInfoPerDAC['nEpochNum']
# Checking if the key exists, if not, the value is empty
# so we have to create empty dict to populate
if not header['dictEpochInfoPerDAC'].has_key(DACNum):
header['dictEpochInfoPerDAC'][DACNum] = { }
header['dictEpochInfoPerDAC'][DACNum][EpochNum] = EpochInfoPerDAC
fid.close()
return header
def read_protocol(self):
"""
Read the protocol waveform of the file, if present; function works with ABF2 only.
Returns: list of segments (one for every episode)
with list of analog signls (one for every DAC).
"""
header = self.read_header()
if header['fFileVersionNumber'] < 2. :
raise IOError("Protocol is only present in ABF2 files.")
nADC = header['sections']['ADCSection']['llNumEntries'] # Number of ADC channels
nDAC = header['sections']['DACSection']['llNumEntries'] # Number of DAC channels
nSam = header['protocol']['lNumSamplesPerEpisode']/nADC # Number of samples per episode
nEpi = header['lActualEpisodes'] # Actual number of episodes
sampling_rate = 1.e6/header['protocol']['fADCSequenceInterval'] * pq.Hz
# Creating a list of segments with analog signals with just holding levels
# List of segments relates to number of episodes, as for recorded data
segments = []
for epiNum in range(nEpi):
seg = Segment(index=epiNum)
# One analog signal for each DAC in segment (episode)
for DACNum in range(nDAC):
t_start = 0 * pq.s# TODO: Possibly check with episode array
name = header['listDACInfo'][DACNum]['DACChNames']
unit = header['listDACInfo'][DACNum]['DACChUnits'].replace('\xb5', 'u')#\xb5 is µ
signal = np.ones(nSam)*header['listDACInfo'][DACNum]['fDACHoldingLevel']*pq.Quantity(1, unit)
anaSig = AnalogSignal(signal, sampling_rate=sampling_rate,
t_start=t_start, name=str(name),
channel_index=DACNum)
# If there are epoch infos for this DAC
if header['dictEpochInfoPerDAC'].has_key(DACNum):
# Save last sample index
i_last = int(nSam*15625/10**6) # TODO guess for first holding
# Go over EpochInfoPerDAC and change the analog signal according to the epochs
for epochNum,epoch in iteritems(header['dictEpochInfoPerDAC'][DACNum]):
i_begin = i_last
i_end = i_last + epoch['lEpochInitDuration'] + epoch['lEpochDurationInc'] * epiNum
anaSig[i_begin:i_end] = np.ones(len(range(i_end-i_begin)))*pq.Quantity(1, unit)* \
(epoch['fEpochInitLevel']+epoch['fEpochLevelInc'] * epiNum);
i_last += epoch['lEpochInitDuration']
seg.analogsignals.append(anaSig)
segments.append(seg)
return segments
BLOCKSIZE = 512
headerDescriptionV1= [
('fFileSignature',0,'4s'),
('fFileVersionNumber',4,'f' ),
('nOperationMode',8,'h' ),
('lActualAcqLength',10,'i' ),
('nNumPointsIgnored',14,'h' ),
('lActualEpisodes',16,'i' ),
('lFileStartTime',24,'i' ),
('lDataSectionPtr',40,'i' ),
('lTagSectionPtr',44,'i' ),
('lNumTagEntries',48,'i' ),
('lSynchArrayPtr',92,'i' ),
('lSynchArraySize',96,'i' ),
('nDataFormat',100,'h' ),
('nADCNumChannels', 120, 'h'),
('fADCSampleInterval',122,'f'),
('fSynchTimeUnit',130,'f' ),
('lNumSamplesPerEpisode',138,'i' ),
('lPreTriggerSamples',142,'i' ),
('lEpisodesPerRun',146,'i' ),
('fADCRange', 244, 'f' ),
('lADCResolution', 252, 'i'),
('nFileStartMillisecs', 366, 'h'),
('nADCPtoLChannelMap', 378, '16h'),
('nADCSamplingSeq', 410, '16h'),
('sADCChannelName',442, '10s'*16),
('sADCUnits',602, '8s'*16) ,
('fADCProgrammableGain', 730, '16f'),
('fInstrumentScaleFactor', 922, '16f'),
('fInstrumentOffset', 986, '16f'),
('fSignalGain', 1050, '16f'),
('fSignalOffset', 1114, '16f'),
('nTelegraphEnable',4512, '16h'),
('fTelegraphAdditGain',4576,'16f'),
]
headerDescriptionV2 =[
('fFileSignature',0,'4s' ),
('fFileVersionNumber',4,'4b') ,
('uFileInfoSize',8,'I' ) ,
('lActualEpisodes',12,'I' ) ,
('uFileStartDate',16,'I' ) ,
('uFileStartTimeMS',20,'I' ) ,
('uStopwatchTime',24,'I' ) ,
('nFileType',28,'H' ) ,
('nDataFormat',30,'H' ) ,
('nSimultaneousScan',32,'H' ) ,
('nCRCEnable',34,'H' ) ,
('uFileCRC',36,'I' ) ,
('FileGUID',40,'I' ) ,
('uCreatorVersion',56,'I' ) ,
('uCreatorNameIndex',60,'I' ) ,
('uModifierVersion',64,'I' ) ,
('uModifierNameIndex',68,'I' ) ,
('uProtocolPathIndex',72,'I' ) ,
]
sectionNames= ['ProtocolSection',
'ADCSection',
'DACSection',
'EpochSection',
'ADCPerDACSection',
'EpochPerDACSection',
'UserListSection',
'StatsRegionSection',
'MathSection',
'StringsSection',
'DataSection',
'TagSection',
'ScopeSection',
'DeltaSection',
'VoiceTagSection',
'SynchArraySection',
'AnnotationSection',
'StatsSection',
]
protocolInfoDescription = [
('nOperationMode','h'),
('fADCSequenceInterval','f'),
('bEnableFileCompression','b'),
('sUnused1','3s'),
('uFileCompressionRatio','I'),
('fSynchTimeUnit','f'),
('fSecondsPerRun','f'),
('lNumSamplesPerEpisode','i'),
('lPreTriggerSamples','i'),
('lEpisodesPerRun','i'),
('lRunsPerTrial','i'),
('lNumberOfTrials','i'),
('nAveragingMode','h'),
('nUndoRunCount','h'),
('nFirstEpisodeInRun','h'),
('fTriggerThreshold','f'),
('nTriggerSource','h'),
('nTriggerAction','h'),
('nTriggerPolarity','h'),
('fScopeOutputInterval','f'),
('fEpisodeStartToStart','f'),
('fRunStartToStart','f'),
('lAverageCount','i'),
('fTrialStartToStart','f'),
('nAutoTriggerStrategy','h'),
('fFirstRunDelayS','f'),
('nChannelStatsStrategy','h'),
('lSamplesPerTrace','i'),
('lStartDisplayNum','i'),
('lFinishDisplayNum','i'),
('nShowPNRawData','h'),
('fStatisticsPeriod','f'),
('lStatisticsMeasurements','i'),
('nStatisticsSaveStrategy','h'),
('fADCRange','f'),
('fDACRange','f'),
('lADCResolution','i'),
('lDACResolution','i'),
('nExperimentType','h'),
('nManualInfoStrategy','h'),
('nCommentsEnable','h'),
('lFileCommentIndex','i'),
('nAutoAnalyseEnable','h'),
('nSignalType','h'),
('nDigitalEnable','h'),
('nActiveDACChannel','h'),
('nDigitalHolding','h'),
('nDigitalInterEpisode','h'),
('nDigitalDACChannel','h'),
('nDigitalTrainActiveLogic','h'),
('nStatsEnable','h'),
('nStatisticsClearStrategy','h'),
('nLevelHysteresis','h'),
('lTimeHysteresis','i'),
('nAllowExternalTags','h'),
('nAverageAlgorithm','h'),
('fAverageWeighting','f'),
('nUndoPromptStrategy','h'),
('nTrialTriggerSource','h'),
('nStatisticsDisplayStrategy','h'),
('nExternalTagType','h'),
('nScopeTriggerOut','h'),
('nLTPType','h'),
('nAlternateDACOutputState','h'),
('nAlternateDigitalOutputState','h'),
('fCellID','3f'),
('nDigitizerADCs','h'),
('nDigitizerDACs','h'),
('nDigitizerTotalDigitalOuts','h'),
('nDigitizerSynchDigitalOuts','h'),
('nDigitizerType','h'),
]
ADCInfoDescription = [
('nADCNum','h'),
('nTelegraphEnable','h'),
('nTelegraphInstrument','h'),
('fTelegraphAdditGain','f'),
('fTelegraphFilter','f'),
('fTelegraphMembraneCap','f'),
('nTelegraphMode','h'),
('fTelegraphAccessResistance','f'),
('nADCPtoLChannelMap','h'),
('nADCSamplingSeq','h'),
('fADCProgrammableGain','f'),
('fADCDisplayAmplification','f'),
('fADCDisplayOffset','f'),
('fInstrumentScaleFactor','f'),
('fInstrumentOffset','f'),
('fSignalGain','f'),
('fSignalOffset','f'),
('fSignalLowpassFilter','f'),
('fSignalHighpassFilter','f'),
('nLowpassFilterType','b'),
('nHighpassFilterType','b'),
('fPostProcessLowpassFilter','f'),
('nPostProcessLowpassFilterType','c'),
('bEnabledDuringPN','b'),
('nStatsChannelPolarity','h'),
('lADCChannelNameIndex','i'),
('lADCUnitsIndex','i'),
]
TagInfoDescription = [
('lTagTime','i'),
('sComment','56s'),
('nTagType','h'),
('nVoiceTagNumber_or_AnnotationIndex','h'),
]
DACInfoDescription = [
('nDACNum','h'),
('nTelegraphDACScaleFactorEnable','h'),
('fInstrumentHoldingLevel', 'f'),
('fDACScaleFactor','f'),
('fDACHoldingLevel','f'),
('fDACCalibrationFactor','f'),
('fDACCalibrationOffset','f'),
('lDACChannelNameIndex','i'),
('lDACChannelUnitsIndex','i'),
('lDACFilePtr','i'),
('lDACFileNumEpisodes','i'),
('nWaveformEnable','h'),
('nWaveformSource','h'),
('nInterEpisodeLevel','h'),
('fDACFileScale','f'),
('fDACFileOffset','f'),
('lDACFileEpisodeNum','i'),
('nDACFileADCNum','h'),
('nConditEnable','h'),
('lConditNumPulses','i'),
('fBaselineDuration','f'),
('fBaselineLevel','f'),
('fStepDuration','f'),
('fStepLevel','f'),
('fPostTrainPeriod','f'),
('fPostTrainLevel','f'),
('nMembTestEnable','h'),
('nLeakSubtractType','h'),
('nPNPolarity','h'),
('fPNHoldingLevel','f'),
('nPNNumADCChannels','h'),
('nPNPosition','h'),
('nPNNumPulses','h'),
('fPNSettlingTime','f'),
('fPNInterpulse','f'),
('nLTPUsageOfDAC','h'),
('nLTPPresynapticPulses','h'),
('lDACFilePathIndex','i'),
('fMembTestPreSettlingTimeMS','f'),
('fMembTestPostSettlingTimeMS','f'),
('nLeakSubtractADCIndex','h'),
('sUnused','124s'),
]
EpochInfoPerDACDescription = [
('nEpochNum','h'),
('nDACNum','h'),
('nEpochType','h'),
('fEpochInitLevel','f'),
('fEpochLevelInc','f'),
('lEpochInitDuration','i'),
('lEpochDurationInc','i'),
('lEpochPulsePeriod','i'),
('lEpochPulseWidth','i'),
('sUnused','18s'),
]
EpochInfoDescription = [
('nEpochNum','h'),
('nDigitalValue','h'),
('nDigitalTrainValue','h'),
('nAlternateDigitalValue','h'),
('nAlternateDigitalTrainValue','h'),
('bEpochCompression','b'),
('sUnused','21s'),
]
|