This file is indexed.

/usr/share/pyshared/neo/io/micromedio.py is in python-neo 0.3.3-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
# -*- coding: utf-8 -*-
"""
Class for reading/writing data from micromed (.trc).
Inspired by the Matlab code for EEGLAB from Rami K. Niazy.

Completed with matlab Guillaume BECQ code.

Supported : Read

Author: sgarcia
"""

import datetime
import os
import struct

# file no longer exists in Python3
try:
    file
except NameError:
    import io
    file = io.BufferedReader

import numpy as np
import quantities as pq

from neo.io.baseio import BaseIO
from neo.core import Segment, AnalogSignal, EpochArray, EventArray
from neo.io.tools import create_many_to_one_relationship


class struct_file(file):
    def read_f(self, fmt):
        return struct.unpack(fmt , self.read(struct.calcsize(fmt)))


class MicromedIO(BaseIO):
    """
    Class for reading  data from micromed (.trc).

    Usage:
        >>> from neo import io
        >>> r = io.MicromedIO(filename='File_micromed_1.TRC')
        >>> seg = r.read_segment(lazy=False, cascade=True)
        >>> print seg.analogsignals              # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
        [<AnalogSignal(array([ -1.77246094e+02,  -2.24707031e+02,  -2.66015625e+02,
        ...
    """
    is_readable        = True
    is_writable        = False

    supported_objects            = [ Segment , AnalogSignal , EventArray, EpochArray ]
    readable_objects    = [Segment]
    writeable_objects    = [ ]

    has_header         = False
    is_streameable     = False
    read_params        = { Segment : [ ] }
    write_params       = None

    name               = None
    extensions          = [ 'TRC' ]

    mode = 'file'

    def __init__(self , filename = None) :
        """
        This class read a micromed TRC file.

        Arguments:
            filename : the filename to read
        """
        BaseIO.__init__(self)
        self.filename = filename


    def read_segment(self, cascade = True, lazy = False,):
        """
        Arguments:
        """
        f = struct_file(self.filename, 'rb')

        #Name
        f.seek(64,0)
        surname = f.read(22)
        while surname[-1] == ' ' :
            if len(surname) == 0 :break
            surname = surname[:-1]
        firstname = f.read(20)
        while firstname[-1] == ' ' :
            if len(firstname) == 0 :break
            firstname = firstname[:-1]

        #Date
        f.seek(128,0)
        day, month, year, hour, minute, sec = f.read_f('bbbbbb')
        rec_datetime = datetime.datetime(year+1900 , month , day, hour, minute, sec)

        f.seek(138,0)
        Data_Start_Offset , Num_Chan , Multiplexer , Rate_Min , Bytes = f.read_f('IHHHH')
        #~ print Num_Chan, Bytes

        #header version
        f.seek(175,0)
        header_version, = f.read_f('b')
        assert header_version == 4

        seg = Segment(  name = firstname+' '+surname,
                                    file_origin = os.path.basename(self.filename),
                                    )
        seg.annotate(surname = surname)
        seg.annotate(firstname = firstname)
        seg.annotate(rec_datetime = rec_datetime)

        if not cascade:
            return seg

        # area
        f.seek(176,0)
        zone_names = ['ORDER', 'LABCOD', 'NOTE', 'FLAGS', 'TRONCA', 'IMPED_B', 'IMPED_E', 'MONTAGE',
                'COMPRESS', 'AVERAGE', 'HISTORY', 'DVIDEO', 'EVENT A', 'EVENT B', 'TRIGGER']
        zones = { }
        for zname in zone_names:
            zname2, pos, length = f.read_f('8sII')
            zones[zname] = zname2, pos, length
            #~ print zname2, pos, length

        # reading raw data
        if not lazy:
            f.seek(Data_Start_Offset,0)
            rawdata = np.fromstring(f.read() , dtype = 'u'+str(Bytes))
            rawdata = rawdata.reshape(( rawdata.size/Num_Chan , Num_Chan))

        # Reading Code Info
        zname2, pos, length = zones['ORDER']
        f.seek(pos,0)
        code = np.fromfile(f, dtype='u2', count=Num_Chan)

        units = {-1: pq.nano*pq.V, 0:pq.uV, 1:pq.mV, 2:1, 100: pq.percent,  101:pq.dimensionless, 102:pq.dimensionless}

        for c in range(Num_Chan):
            zname2, pos, length = zones['LABCOD']
            f.seek(pos+code[c]*128+2,0)

            label = f.read(6).strip("\x00")
            ground = f.read(6).strip("\x00")
            logical_min , logical_max, logical_ground, physical_min, physical_max = f.read_f('iiiii')
            k, = f.read_f('h')
            if k in units.keys() :
                unit = units[k]
            else :
                unit = pq.uV

            f.seek(8,1)
            sampling_rate, = f.read_f('H') * pq.Hz
            sampling_rate *= Rate_Min

            if lazy:
                signal = [ ]*unit
            else:
                factor = float(physical_max - physical_min) / float(logical_max-logical_min+1)
                signal = ( rawdata[:,c].astype('f') - logical_ground )* factor*unit

            anaSig = AnalogSignal(signal, sampling_rate=sampling_rate,
                                  name=label, channel_index=c)
            if lazy:
                anaSig.lazy_shape = None
            anaSig.annotate(ground = ground)

            seg.analogsignals.append( anaSig )


        sampling_rate = np.mean([ anaSig.sampling_rate for anaSig in seg.analogsignals ])*pq.Hz

        # Read trigger and notes
        for zname, label_dtype in [ ('TRIGGER', 'u2'), ('NOTE', 'S40') ]:
            zname2, pos, length = zones[zname]
            f.seek(pos,0)
            triggers = np.fromstring(f.read(length) , dtype = [('pos','u4'), ('label', label_dtype)] ,  )
            ea = EventArray(name =zname[0]+zname[1:].lower())
            if not lazy:
                keep = (triggers['pos']>=triggers['pos'][0]) & (triggers['pos']<rawdata.shape[0]) & (triggers['pos']!=0)
                triggers = triggers[keep]
                ea.labels = triggers['label'].astype('S')
                ea.times = (triggers['pos']/sampling_rate).rescale('s')
            else:
                ea.lazy_shape = triggers.size
            seg.eventarrays.append(ea)
        
        # Read Event A and B
        # Not so well  tested
        for zname in ['EVENT A', 'EVENT B']:
            zname2, pos, length = zones[zname]
            f.seek(pos,0)
            epochs = np.fromstring(f.read(length) , 
                            dtype = [('label','u4'),('start','u4'),('stop','u4'),]  )
            ep = EpochArray(name =zname[0]+zname[1:].lower())
            if not lazy:
                keep = (epochs['start']>0) & (epochs['start']<rawdata.shape[0]) & (epochs['stop']<rawdata.shape[0])
                epochs = epochs[keep]
                ep.labels = epochs['label'].astype('S')
                ep.times = (epochs['start']/sampling_rate).rescale('s')
                ep.durations = ((epochs['stop'] - epochs['start'])/sampling_rate).rescale('s')
            else:
                ep.lazy_shape = triggers.size
            seg.epocharrays.append(ep)
        
        
        create_many_to_one_relationship(seg)
        return seg