This file is indexed.

/usr/share/pyshared/neo/io/tdtio.py is in python-neo 0.3.3-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
# -*- coding: utf-8 -*-
"""
Class for reading data from from Tucker Davis TTank format.
Terminology:
TDT hold data with tanks (actually a directory). And tanks hold sub block (sub directories).
Tanks correspond to neo.Block and tdt block correspond to neo.Segment.

Note the name Block is ambiguous because it does not refer to same thing in TDT terminilogy and neo.


Depend on:

Supported : Read

Author: sgarcia

"""

import os
import struct
import sys

import numpy as np
import quantities as pq

from neo.io.baseio import BaseIO
from neo.core import Block, Segment, AnalogSignal, SpikeTrain, EventArray
from neo.io.tools import create_many_to_one_relationship, iteritems

PY3K = (sys.version_info[0] == 3)


class TdtIO(BaseIO):
    """
    Class for reading data from from Tucker Davis TTank format.

    Usage:
        >>> from neo import io
        >>> r = io.TdtIO(dirname='aep_05')
        >>> bl = r.read_block(lazy=False, cascade=True)
        >>> print bl.segments
        [<neo.core.segment.Segment object at 0x1060a4d10>]
        >>> print bl.segments[0].analogsignals
        [<AnalogSignal(array([ 2.18811035,  2.19726562,  2.21252441, ...,  1.33056641,
                1.3458252 ,  1.3671875 ], dtype=float32) * pA, [0.0 s, 191.2832 s], sampling rate: 10000.0 Hz)>]
        >>> print bl.segments[0].eventarrays
        []
    """



    is_readable        = True
    is_writable        = False

    supported_objects  = [Block, Segment , AnalogSignal, EventArray ]
    readable_objects   = [Block]
    writeable_objects  = []

    has_header         = False
    is_streameable     = False

    read_params        = {
                        Block : [
                                ],
                        }

    write_params       = None

    name               = 'TDT'
    extensions          = [ ]

    mode = 'dir'

    def __init__(self , dirname = None) :
        """
        This class read a WinEDR wcp file.

        **Arguments**
        Arguments:
            dirname: path of the TDT tank (a directory)

        """
        BaseIO.__init__(self)
        self.dirname = dirname
        if self.dirname.endswith('/'):
            self.dirname = self.dirname[:-1]

    def read_block(self,
                                        lazy = False,
                                        cascade = True,
                                ):
        bl = Block()
        tankname = os.path.basename(self.dirname)
        bl.file_origin = tankname
        if not cascade : return bl
        for blockname in os.listdir(self.dirname):
            if blockname == 'TempBlk': continue
            subdir = os.path.join(self.dirname,blockname)

            if not os.path.isdir(subdir): continue

            seg = Segment(name = blockname)
            bl.segments.append( seg)


            global_t_start = None
            # Step 1 : first loop for counting - tsq file
            tsq = open(os.path.join(subdir, tankname+'_'+blockname+'.tsq'), 'rb')
            hr = HeaderReader(tsq, TsqDescription)
            allsig = { }
            allspiketr = { }
            allevent = { }
            while 1:
                h= hr.read_f()
                if h==None:break

                channel, code ,  evtype = h['channel'], h['code'], h['evtype']

                if Types[evtype] == 'EVTYPE_UNKNOWN':
                    pass

                elif Types[evtype] == 'EVTYPE_MARK' :
                    if global_t_start is None:
                        global_t_start = h['timestamp']

                elif Types[evtype] == 'EVTYPE_SCALER' :
                    # TODO
                    pass

                elif Types[evtype] == 'EVTYPE_STRON' or \
                     Types[evtype] == 'EVTYPE_STROFF':
                    # EVENTS

                    if code not in allevent:
                        allevent[code] = { }
                    if channel not in allevent[code]:
                        ea = EventArray(name = code , channel_index = channel)
                        # for counting:
                        ea.lazy_shape = 0
                        ea.maxlabelsize = 0


                        allevent[code][channel] = ea

                    allevent[code][channel].lazy_shape += 1
                    strobe, = struct.unpack('d' , struct.pack('q' , h['eventoffset']))
                    strobe = str(strobe)
                    if len(strobe)>= allevent[code][channel].maxlabelsize:
                        allevent[code][channel].maxlabelsize = len(strobe)

                    #~ ev = Event()
                    #~ ev.time = h['timestamp'] - global_t_start
                    #~ ev.name = code
                     #~ # it the strobe attribute masked with eventoffset
                    #~ strobe, = struct.unpack('d' , struct.pack('q' , h['eventoffset']))
                    #~ ev.label = str(strobe)
                    #~ seg._events.append( ev )

                elif Types[evtype] == 'EVTYPE_SNIP' :

                    if code not in allspiketr:
                        allspiketr[code] = { }
                    if channel not in allspiketr[code]:
                        allspiketr[code][channel] = { }
                    if h['sortcode'] not in allspiketr[code][channel]:





                        sptr = SpikeTrain([ ], units = 's',
                                                        name = str(h['sortcode']),
                                                        #t_start = global_t_start,
                                                        t_start = 0.*pq.s,
                                                        t_stop = 0.*pq.s, # temporary
                                                        left_sweep = (h['size']-10.)/2./h['frequency'] * pq.s,
                                                        sampling_rate = h['frequency'] * pq.Hz,

                                                        )
                        #~ sptr.channel = channel
                        #sptr.annotations['channel_index'] = channel
                        sptr.annotate(channel_index = channel)

                        # for counting:
                        sptr.lazy_shape = 0
                        sptr.pos = 0
                        sptr.waveformsize = h['size']-10

                        #~ sptr.name = str(h['sortcode'])
                        #~ sptr.t_start = global_t_start
                        #~ sptr.sampling_rate = h['frequency']
                        #~ sptr.left_sweep = (h['size']-10.)/2./h['frequency']
                        #~ sptr.right_sweep = (h['size']-10.)/2./h['frequency']
                        #~ sptr.waveformsize = h['size']-10

                        allspiketr[code][channel][h['sortcode']] = sptr

                    allspiketr[code][channel][h['sortcode']].lazy_shape += 1

                elif Types[evtype] == 'EVTYPE_STREAM':
                    if code not in allsig:
                        allsig[code] = { }
                    if channel not in allsig[code]:
                        #~ print 'code', code, 'channel',  channel
                        anaSig = AnalogSignal([] * pq.V,
                                              name=code,
                                              sampling_rate=
                                              h['frequency'] * pq.Hz,
                                              t_start=(h['timestamp'] -
                                                       global_t_start) * pq.s,
                                              channel_index=channel)
                        anaSig.lazy_dtype = np.dtype(DataFormats[h['dataformat']])
                        anaSig.pos = 0

                        # for counting:
                        anaSig.lazy_shape = 0
                        #~ anaSig.pos = 0
                        allsig[code][channel] = anaSig
                    allsig[code][channel].lazy_shape += (h['size']*4-40)/anaSig.dtype.itemsize

            if not lazy:
                # Step 2 : allocate memory
                for code, v in iteritems(allsig):
                    for channel, anaSig in iteritems(v):
                        v[channel] = anaSig.duplicate_with_new_array(np.zeros((anaSig.lazy_shape) , dtype = anaSig.lazy_dtype)*pq.V )
                        v[channel].pos = 0

                for code, v in iteritems(allevent):
                    for channel, ea in iteritems(v):
                        ea.times = np.empty( (ea.lazy_shape)  ) * pq.s
                        ea.labels = np.empty( (ea.lazy_shape), dtype = 'S'+str(ea.maxlabelsize) )
                        ea.pos = 0

                for code, v in iteritems(allspiketr):
                    for channel, allsorted in iteritems(v):
                        for sortcode, sptr in iteritems(allsorted):
                            new = SpikeTrain(np.zeros( (sptr.lazy_shape), dtype = 'f8' ) *pq.s ,
                                                            name = sptr.name,
                                                            t_start = sptr.t_start,
                                                            t_stop = sptr.t_stop,
                                                            left_sweep = sptr.left_sweep,
                                                            sampling_rate = sptr.sampling_rate,
                                                            waveforms = np.ones( (sptr.lazy_shape, 1, sptr.waveformsize) , dtype = 'f') * pq.mV ,
                                                        )
                            new.annotations.update(sptr.annotations)
                            new.pos = 0
                            new.waveformsize = sptr.waveformsize
                            allsorted[sortcode] = new

                # Step 3 : searh sev (individual data files) or tev (common data file)
                # sev is for version > 70
                if os.path.exists(os.path.join(subdir, tankname+'_'+blockname+'.tev')):
                    tev = open(os.path.join(subdir, tankname+'_'+blockname+'.tev'), 'rb')
                else:
                    tev = None
                for code, v in iteritems(allsig):
                    for channel, anaSig in iteritems(v):
                        if PY3K:
                            signame = anaSig.name.decode('ascii')
                        else:
                            signame = anaSig.name
                        filename = os.path.join(subdir, tankname+'_'+blockname+'_'+signame+'_ch'+str(anaSig.channel_index)+'.sev')
                        if os.path.exists(filename):
                            anaSig.fid = open(filename, 'rb')
                        else:
                            anaSig.fid = tev
                for code, v in iteritems(allspiketr):
                    for channel, allsorted in iteritems(v):
                        for sortcode, sptr in iteritems(allsorted):
                            sptr.fid = tev

                # Step 4 : second loop for copyin chunk of data
                tsq.seek(0)
                while 1:
                    h= hr.read_f()
                    if h==None:break
                    channel, code ,  evtype = h['channel'], h['code'], h['evtype']

                    if Types[evtype] == 'EVTYPE_STREAM':
                        a = allsig[code][channel]
                        dt = a.dtype
                        s = int((h['size']*4-40)/dt.itemsize)
                        a.fid.seek(h['eventoffset'])
                        a[ a.pos:a.pos+s ]  = np.fromstring( a.fid.read( s*dt.itemsize ), dtype = a.dtype)
                        a.pos += s

                    elif Types[evtype] == 'EVTYPE_STRON' or \
                        Types[evtype] == 'EVTYPE_STROFF':
                        ea = allevent[code][channel]
                        ea.times[ea.pos] = (h['timestamp'] - global_t_start) * pq.s
                        strobe, = struct.unpack('d' , struct.pack('q' , h['eventoffset']))
                        ea.labels[ea.pos] = str(strobe)
                        ea.pos += 1

                    elif Types[evtype] == 'EVTYPE_SNIP':
                        sptr = allspiketr[code][channel][h['sortcode']]
                        sptr.t_stop =  (h['timestamp'] - global_t_start) * pq.s
                        sptr[sptr.pos] = (h['timestamp'] - global_t_start) * pq.s
                        sptr.waveforms[sptr.pos, 0, :] = np.fromstring( sptr.fid.read( sptr.waveformsize*4 ), dtype = 'f4') * pq.V
                        sptr.pos += 1


            # Step 5 : populating segment
            for code, v in iteritems(allsig):
                for channel, anaSig in iteritems(v):
                    seg.analogsignals.append( anaSig )

            for code, v in iteritems(allevent):
                for channel, ea in iteritems(v):
                    seg.eventarrays.append( ea )


            for code, v in iteritems(allspiketr):
                for channel, allsorted in iteritems(v):
                    for sortcode, sptr in iteritems(allsorted):
                        seg.spiketrains.append( sptr )

        create_many_to_one_relationship(bl)
        return bl


TsqDescription = [
    ('size','i'),
    ('evtype','i'),
    ('code','4s'),
    ('channel','H'),
    ('sortcode','H'),
    ('timestamp','d'),
    ('eventoffset','q'),
    ('dataformat','i'),
    ('frequency','f'),
    ]

Types =    {
                0x0 : 'EVTYPE_UNKNOWN',
                0x101:'EVTYPE_STRON',
                0x102:'EVTYPE_STROFF',
                0x201:'EVTYPE_SCALER',
                0x8101:'EVTYPE_STREAM',
                0x8201:'EVTYPE_SNIP',
                0x8801: 'EVTYPE_MARK',
                }
DataFormats = {
                        0 : np.float32,
                        1 : np.int32,
                        2 : np.int16,
                        3 : np.int8,
                        4 : np.float64,
                        #~ 5 : ''
                        }





class HeaderReader():
    def __init__(self,fid ,description ):
        self.fid = fid
        self.description = description
    def read_f(self, offset =None):
        if offset is not None :
            self.fid.seek(offset)
        d = { }
        for key, fmt in self.description :
            buf = self.fid.read(struct.calcsize(fmt))
            if len(buf) != struct.calcsize(fmt) : return None
            val = struct.unpack(fmt , buf)
            if len(val) == 1:
                val = val[0]
            else :
                val = list(val)
            #~ if 's' in fmt :
                #~ val = val.replace('\x00','')
            d[key] = val
        return d