This file is indexed.

/usr/lib/python2.7/dist-packages/networkx/classes/multidigraph.py is in python-networkx 1.9+dfsg1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
"""Base class for MultiDiGraph."""
#    Copyright (C) 2004-2011 by
#    Aric Hagberg <hagberg@lanl.gov>
#    Dan Schult <dschult@colgate.edu>
#    Pieter Swart <swart@lanl.gov>
#    All rights reserved.
#    BSD license.
from copy import deepcopy
import networkx as nx
from networkx.classes.graph import Graph  # for doctests
from networkx.classes.digraph import DiGraph
from networkx.classes.multigraph import MultiGraph
from networkx.exception import NetworkXError
__author__ = """\n""".join(['Aric Hagberg (hagberg@lanl.gov)',
                            'Pieter Swart (swart@lanl.gov)',
                            'Dan Schult(dschult@colgate.edu)'])

class MultiDiGraph(MultiGraph,DiGraph):
    """A directed graph class that can store multiedges.

    Multiedges are multiple edges between two nodes.  Each edge
    can hold optional data or attributes.

    A MultiDiGraph holds directed edges.  Self loops are allowed.

    Nodes can be arbitrary (hashable) Python objects with optional
    key/value attributes.

    Edges are represented as links between nodes with optional
    key/value attributes.

    Parameters
    ----------
    data : input graph
        Data to initialize graph.  If data=None (default) an empty
        graph is created.  The data can be an edge list, or any
        NetworkX graph object.  If the corresponding optional Python
        packages are installed the data can also be a NumPy matrix
        or 2d ndarray, a SciPy sparse matrix, or a PyGraphviz graph.
    attr : keyword arguments, optional (default= no attributes)
        Attributes to add to graph as key=value pairs.

    See Also
    --------
    Graph
    DiGraph
    MultiGraph

    Examples
    --------
    Create an empty graph structure (a "null graph") with no nodes and
    no edges.

    >>> G = nx.MultiDiGraph()

    G can be grown in several ways.

    **Nodes:**

    Add one node at a time:

    >>> G.add_node(1)

    Add the nodes from any container (a list, dict, set or
    even the lines from a file or the nodes from another graph).

    >>> G.add_nodes_from([2,3])
    >>> G.add_nodes_from(range(100,110))
    >>> H=nx.Graph()
    >>> H.add_path([0,1,2,3,4,5,6,7,8,9])
    >>> G.add_nodes_from(H)

    In addition to strings and integers any hashable Python object
    (except None) can represent a node, e.g. a customized node object,
    or even another Graph.

    >>> G.add_node(H)

    **Edges:**

    G can also be grown by adding edges.

    Add one edge,

    >>> G.add_edge(1, 2)

    a list of edges,

    >>> G.add_edges_from([(1,2),(1,3)])

    or a collection of edges,

    >>> G.add_edges_from(H.edges())

    If some edges connect nodes not yet in the graph, the nodes
    are added automatically.  If an edge already exists, an additional
    edge is created and stored using a key to identify the edge.
    By default the key is the lowest unused integer.

    >>> G.add_edges_from([(4,5,dict(route=282)), (4,5,dict(route=37))])
    >>> G[4]
    {5: {0: {}, 1: {'route': 282}, 2: {'route': 37}}}

    **Attributes:**

    Each graph, node, and edge can hold key/value attribute pairs
    in an associated attribute dictionary (the keys must be hashable).
    By default these are empty, but can be added or changed using
    add_edge, add_node or direct manipulation of the attribute
    dictionaries named graph, node and edge respectively.

    >>> G = nx.MultiDiGraph(day="Friday")
    >>> G.graph
    {'day': 'Friday'}

    Add node attributes using add_node(), add_nodes_from() or G.node

    >>> G.add_node(1, time='5pm')
    >>> G.add_nodes_from([3], time='2pm')
    >>> G.node[1]
    {'time': '5pm'}
    >>> G.node[1]['room'] = 714
    >>> del G.node[1]['room'] # remove attribute
    >>> G.nodes(data=True)
    [(1, {'time': '5pm'}), (3, {'time': '2pm'})]

    Warning: adding a node to G.node does not add it to the graph.

    Add edge attributes using add_edge(), add_edges_from(), subscript
    notation, or G.edge.

    >>> G.add_edge(1, 2, weight=4.7 )
    >>> G.add_edges_from([(3,4),(4,5)], color='red')
    >>> G.add_edges_from([(1,2,{'color':'blue'}), (2,3,{'weight':8})])
    >>> G[1][2][0]['weight'] = 4.7
    >>> G.edge[1][2][0]['weight'] = 4

    **Shortcuts:**

    Many common graph features allow python syntax to speed reporting.

    >>> 1 in G     # check if node in graph
    True
    >>> [n for n in G if n<3]   # iterate through nodes
    [1, 2]
    >>> len(G)  # number of nodes in graph
    5
    >>> G[1] # adjacency dict keyed by neighbor to edge attributes
    ...            # Note: you should not change this dict manually!
    {2: {0: {'weight': 4}, 1: {'color': 'blue'}}}

    The fastest way to traverse all edges of a graph is via
    adjacency_iter(), but the edges() method is often more convenient.

    >>> for n,nbrsdict in G.adjacency_iter():
    ...     for nbr,keydict in nbrsdict.items():
    ...        for key,eattr in keydict.items():
    ...            if 'weight' in eattr:
    ...                (n,nbr,eattr['weight'])
    (1, 2, 4)
    (2, 3, 8)
    >>> [ (u,v,edata['weight']) for u,v,edata in G.edges(data=True) if 'weight' in edata ]
    [(1, 2, 4), (2, 3, 8)]

    **Reporting:**

    Simple graph information is obtained using methods.
    Iterator versions of many reporting methods exist for efficiency.
    Methods exist for reporting nodes(), edges(), neighbors() and degree()
    as well as the number of nodes and edges.

    For details on these and other miscellaneous methods, see below.
    """
    def add_edge(self, u, v, key=None, attr_dict=None, **attr):
        """Add an edge between u and v.

        The nodes u and v will be automatically added if they are
        not already in the graph.

        Edge attributes can be specified with keywords or by providing
        a dictionary with key/value pairs.  See examples below.

        Parameters
        ----------
        u,v : nodes
            Nodes can be, for example, strings or numbers.
            Nodes must be hashable (and not None) Python objects.
        key : hashable identifier, optional (default=lowest unused integer)
            Used to distinguish multiedges between a pair of nodes.
        attr_dict : dictionary, optional (default= no attributes)
            Dictionary of edge attributes.  Key/value pairs will
            update existing data associated with the edge.
        attr : keyword arguments, optional
            Edge data (or labels or objects) can be assigned using
            keyword arguments.

        See Also
        --------
        add_edges_from : add a collection of edges

        Notes
        -----
        To replace/update edge data, use the optional key argument
        to identify a unique edge.  Otherwise a new edge will be created.

        NetworkX algorithms designed for weighted graphs cannot use
        multigraphs directly because it is not clear how to handle
        multiedge weights.  Convert to Graph using edge attribute
        'weight' to enable weighted graph algorithms.

        Examples
        --------
        The following all add the edge e=(1,2) to graph G:

        >>> G = nx.MultiDiGraph()
        >>> e = (1,2)
        >>> G.add_edge(1, 2)           # explicit two-node form
        >>> G.add_edge(*e)             # single edge as tuple of two nodes
        >>> G.add_edges_from( [(1,2)] ) # add edges from iterable container

        Associate data to edges using keywords:

        >>> G.add_edge(1, 2, weight=3)
        >>> G.add_edge(1, 2, key=0, weight=4)   # update data for key=0
        >>> G.add_edge(1, 3, weight=7, capacity=15, length=342.7)
        """
        # set up attribute dict
        if attr_dict is None:
            attr_dict=attr
        else:
            try:
                attr_dict.update(attr)
            except AttributeError:
                raise NetworkXError(\
                    "The attr_dict argument must be a dictionary.")
        # add nodes
        if u not in self.succ:
            self.succ[u] = {}
            self.pred[u] = {}
            self.node[u] = {}
        if v not in self.succ:
            self.succ[v] = {}
            self.pred[v] = {}
            self.node[v] = {}
        if v in self.succ[u]:
            keydict=self.adj[u][v]
            if key is None:
                # find a unique integer key
                # other methods might be better here?
                key=len(keydict)
                while key in keydict:
                    key+=1
            datadict=keydict.get(key,{})
            datadict.update(attr_dict)
            keydict[key]=datadict
        else:
            # selfloops work this way without special treatment
            if key is None:
                key=0
            datadict={}
            datadict.update(attr_dict)
            keydict={key:datadict}
            self.succ[u][v] = keydict
            self.pred[v][u] = keydict

    def remove_edge(self, u, v, key=None):
        """Remove an edge between u and v.

        Parameters
        ----------
        u,v: nodes
            Remove an edge between nodes u and v.
        key : hashable identifier, optional (default=None)
            Used to distinguish multiple edges between a pair of nodes.
            If None remove a single (abritrary) edge between u and v.

        Raises
        ------
        NetworkXError
            If there is not an edge between u and v, or
            if there is no edge with the specified key.

        See Also
        --------
        remove_edges_from : remove a collection of edges

        Examples
        --------
        >>> G = nx.MultiDiGraph()
        >>> G.add_path([0,1,2,3])
        >>> G.remove_edge(0,1)
        >>> e = (1,2)
        >>> G.remove_edge(*e) # unpacks e from an edge tuple

        For multiple edges

        >>> G = nx.MultiDiGraph()
        >>> G.add_edges_from([(1,2),(1,2),(1,2)])
        >>> G.remove_edge(1,2) # remove a single (arbitrary) edge

        For edges with keys

        >>> G = nx.MultiDiGraph()
        >>> G.add_edge(1,2,key='first')
        >>> G.add_edge(1,2,key='second')
        >>> G.remove_edge(1,2,key='second')

        """
        try:
            d=self.adj[u][v]
        except (KeyError):
            raise NetworkXError(
                "The edge %s-%s is not in the graph."%(u,v))
        # remove the edge with specified data
        if key is None:
            d.popitem()
        else:
            try:
                del d[key]
            except (KeyError):
                raise NetworkXError(
                "The edge %s-%s with key %s is not in the graph."%(u,v,key))
        if len(d)==0:
            # remove the key entries if last edge
            del self.succ[u][v]
            del self.pred[v][u]


    def edges_iter(self, nbunch=None, data=False, keys=False):
        """Return an iterator over the edges.

        Edges are returned as tuples with optional data and keys
        in the order (node, neighbor, key, data).

        Parameters
        ----------
        nbunch : iterable container, optional (default= all nodes)
            A container of nodes.  The container will be iterated
            through once.
        data : bool, optional (default=False)
            If True, return edge attribute dict with each edge.
        keys : bool, optional (default=False)
            If True, return edge keys with each edge.

        Returns
        -------
        edge_iter : iterator
            An iterator of (u,v), (u,v,d) or (u,v,key,d) tuples of edges.

        See Also
        --------
        edges : return a list of edges

        Notes
        -----
        Nodes in nbunch that are not in the graph will be (quietly) ignored.
        For directed graphs this returns the out-edges.

        Examples
        --------
        >>> G = nx.MultiDiGraph()
        >>> G.add_path([0,1,2,3])
        >>> [e for e in G.edges_iter()]
        [(0, 1), (1, 2), (2, 3)]
        >>> list(G.edges_iter(data=True)) # default data is {} (empty dict)
        [(0, 1, {}), (1, 2, {}), (2, 3, {})]
        >>> list(G.edges_iter([0,2]))
        [(0, 1), (2, 3)]
        >>> list(G.edges_iter(0))
        [(0, 1)]

        """
        if nbunch is None:
            nodes_nbrs = self.adj.items()
        else:
            nodes_nbrs=((n,self.adj[n]) for n in self.nbunch_iter(nbunch))
        if data:
            for n,nbrs in nodes_nbrs:
                for nbr,keydict in nbrs.items():
                    for key,data in keydict.items():
                        if keys:
                            yield (n,nbr,key,data)
                        else:
                            yield (n,nbr,data)
        else:
            for n,nbrs in nodes_nbrs:
                for nbr,keydict in nbrs.items():
                    for key,data in keydict.items():
                        if keys:
                            yield (n,nbr,key)
                        else:
                            yield (n,nbr)

    # alias out_edges to edges
    out_edges_iter=edges_iter

    def out_edges(self, nbunch=None, keys=False, data=False):
        """Return a list of the outgoing edges.

        Edges are returned as tuples with optional data and keys
        in the order (node, neighbor, key, data).

        Parameters
        ----------
        nbunch : iterable container, optional (default= all nodes)
            A container of nodes.  The container will be iterated
            through once.
        data : bool, optional (default=False)
            If True, return edge attribute dict with each edge.
        keys : bool, optional (default=False)
            If True, return edge keys with each edge.

        Returns
        -------
        out_edges : list
            An listr of (u,v), (u,v,d) or (u,v,key,d) tuples of edges.

        Notes
        -----
        Nodes in nbunch that are not in the graph will be (quietly) ignored.
        For directed graphs edges() is the same as out_edges().

        See Also
        --------
        in_edges: return a list of incoming edges
        """
        return list(self.out_edges_iter(nbunch, keys=keys, data=data))


    def in_edges_iter(self, nbunch=None, data=False, keys=False):
        """Return an iterator over the incoming edges.

        Parameters
        ----------
        nbunch : iterable container, optional (default= all nodes)
            A container of nodes.  The container will be iterated
            through once.
        data : bool, optional (default=False)
            If True, return edge attribute dict with each edge.
        keys : bool, optional (default=False)
            If True, return edge keys with each edge.

        Returns
        -------
        in_edge_iter : iterator
            An iterator of (u,v), (u,v,d) or (u,v,key,d) tuples of edges.

        See Also
        --------
        edges_iter : return an iterator of edges
        """
        if nbunch is None:
            nodes_nbrs=self.pred.items()
        else:
            nodes_nbrs=((n,self.pred[n]) for n in self.nbunch_iter(nbunch))
        if data:
            for n,nbrs in nodes_nbrs:
                for nbr,keydict in nbrs.items():
                    for key,data in keydict.items():
                        if keys:
                            yield (nbr,n,key,data)
                        else:
                            yield (nbr,n,data)
        else:
            for n,nbrs in nodes_nbrs:
                for nbr,keydict in nbrs.items():
                    for key,data in keydict.items():
                        if keys:
                            yield (nbr,n,key)
                        else:
                            yield (nbr,n)

    def in_edges(self, nbunch=None, keys=False, data=False):
        """Return a list of the incoming edges.

        Parameters
        ----------
        nbunch : iterable container, optional (default= all nodes)
            A container of nodes.  The container will be iterated
            through once.
        data : bool, optional (default=False)
            If True, return edge attribute dict with each edge.
        keys : bool, optional (default=False)
            If True, return edge keys with each edge.

        Returns
        -------
        in_edges : list
            A list  of (u,v), (u,v,d) or (u,v,key,d) tuples of edges.

        See Also
        --------
        out_edges: return a list of outgoing edges
        """
        return list(self.in_edges_iter(nbunch, keys=keys, data=data))


    def degree_iter(self, nbunch=None, weight=None):
        """Return an iterator for (node, degree).

        The node degree is the number of edges adjacent to the node.

        Parameters
        ----------
        nbunch : iterable container, optional (default=all nodes)
            A container of nodes.  The container will be iterated
            through once.

        weight : string or None, optional (default=None)
           The edge attribute that holds the numerical value used 
           as a weight.  If None, then each edge has weight 1.
           The degree is the sum of the edge weights.

        Returns
        -------
        nd_iter : an iterator
            The iterator returns two-tuples of (node, degree).

        See Also
        --------
        degree

        Examples
        --------
        >>> G = nx.MultiDiGraph()
        >>> G.add_path([0,1,2,3])
        >>> list(G.degree_iter(0)) # node 0 with degree 1
        [(0, 1)]
        >>> list(G.degree_iter([0,1]))
        [(0, 1), (1, 2)]

        """
        if nbunch is None:
            nodes_nbrs=zip(iter(self.succ.items()),iter(self.pred.items()))
        else:
            nodes_nbrs=zip(
                ((n,self.succ[n]) for n in self.nbunch_iter(nbunch)),
                ((n,self.pred[n]) for n in self.nbunch_iter(nbunch)))

        if weight is None:
            for (n,succ),(n2,pred) in nodes_nbrs:
                indeg = sum([len(data) for data in pred.values()])
                outdeg = sum([len(data) for data in succ.values()])
                yield (n, indeg + outdeg)
        else:
        # edge weighted graph - degree is sum of nbr edge weights
            for (n,succ),(n2,pred) in nodes_nbrs:
                deg = sum([d.get(weight,1)
                           for data in pred.values()
                           for d in data.values()])
                deg += sum([d.get(weight,1)
                           for data in succ.values()
                           for d in data.values()])
                yield (n, deg)


    def in_degree_iter(self, nbunch=None, weight=None):
        """Return an iterator for (node, in-degree).

        The node in-degree is the number of edges pointing in to the node.

        Parameters
        ----------
        nbunch : iterable container, optional (default=all nodes)
            A container of nodes.  The container will be iterated
            through once.

        weight : string or None, optional (default=None)
           The edge attribute that holds the numerical value used 
           as a weight.  If None, then each edge has weight 1.
           The degree is the sum of the edge weights adjacent to the node.

        Returns
        -------
        nd_iter : an iterator
            The iterator returns two-tuples of (node, in-degree).

        See Also
        --------
        degree, in_degree, out_degree, out_degree_iter

        Examples
        --------
        >>> G = nx.MultiDiGraph()
        >>> G.add_path([0,1,2,3])
        >>> list(G.in_degree_iter(0)) # node 0 with degree 0
        [(0, 0)]
        >>> list(G.in_degree_iter([0,1]))
        [(0, 0), (1, 1)]

        """
        if nbunch is None:
            nodes_nbrs=self.pred.items()
        else:
            nodes_nbrs=((n,self.pred[n]) for n in self.nbunch_iter(nbunch))

        if weight is None:
            for n,nbrs in nodes_nbrs:
                yield (n, sum([len(data) for data in nbrs.values()]) )
        else:
            # edge weighted graph - degree is sum of nbr edge weights
            for n,pred in nodes_nbrs:
                deg = sum([d.get(weight,1)
                           for data in pred.values()
                           for d in data.values()])
                yield (n, deg)


    def out_degree_iter(self, nbunch=None, weight=None):
        """Return an iterator for (node, out-degree).

        The node out-degree is the number of edges pointing out of the node.

        Parameters
        ----------
        nbunch : iterable container, optional (default=all nodes)
            A container of nodes.  The container will be iterated
            through once.

        weight : string or None, optional (default=None)
           The edge attribute that holds the numerical value used 
           as a weight.  If None, then each edge has weight 1.
           The degree is the sum of the edge weights.

        Returns
        -------
        nd_iter : an iterator
            The iterator returns two-tuples of (node, out-degree).

        See Also
        --------
        degree, in_degree, out_degree, in_degree_iter

        Examples
        --------
        >>> G = nx.MultiDiGraph()
        >>> G.add_path([0,1,2,3])
        >>> list(G.out_degree_iter(0)) # node 0 with degree 1
        [(0, 1)]
        >>> list(G.out_degree_iter([0,1]))
        [(0, 1), (1, 1)]

        """
        if nbunch is None:
            nodes_nbrs=self.succ.items()
        else:
            nodes_nbrs=((n,self.succ[n]) for n in self.nbunch_iter(nbunch))

        if weight is None:
            for n,nbrs in nodes_nbrs:
                yield (n, sum([len(data) for data in nbrs.values()]) )
        else:
            for n,succ in nodes_nbrs:
                deg = sum([d.get(weight,1)
                           for data in succ.values()
                           for d in data.values()])
                yield (n, deg)

    def is_multigraph(self):
        """Return True if graph is a multigraph, False otherwise."""
        return True

    def is_directed(self):
        """Return True if graph is directed, False otherwise."""
        return True

    def to_directed(self):
        """Return a directed copy of the graph.

        Returns
        -------
        G : MultiDiGraph
            A deepcopy of the graph.

        Notes
        -----
        If edges in both directions (u,v) and (v,u) exist in the
        graph, attributes for the new undirected edge will be a combination of
        the attributes of the directed edges.  The edge data is updated
        in the (arbitrary) order that the edges are encountered.  For
        more customized control of the edge attributes use add_edge().

        This returns a "deepcopy" of the edge, node, and
        graph attributes which attempts to completely copy
        all of the data and references.

        This is in contrast to the similar G=DiGraph(D) which returns a
        shallow copy of the data.

        See the Python copy module for more information on shallow
        and deep copies, http://docs.python.org/library/copy.html.

        Examples
        --------
        >>> G = nx.Graph()   # or MultiGraph, etc
        >>> G.add_path([0,1])
        >>> H = G.to_directed()
        >>> H.edges()
        [(0, 1), (1, 0)]

        If already directed, return a (deep) copy

        >>> G = nx.MultiDiGraph()
        >>> G.add_path([0,1])
        >>> H = G.to_directed()
        >>> H.edges()
        [(0, 1)]
        """
        return deepcopy(self)

    def to_undirected(self, reciprocal=False):
        """Return an undirected representation of the digraph.

        Parameters
        ----------
        reciprocal : bool (optional)
          If True only keep edges that appear in both directions 
          in the original digraph. 

        Returns
        -------
        G : MultiGraph
            An undirected graph with the same name and nodes and
            with edge (u,v,data) if either (u,v,data) or (v,u,data)
            is in the digraph.  If both edges exist in digraph and
            their edge data is different, only one edge is created
            with an arbitrary choice of which edge data to use.
            You must check and correct for this manually if desired.

        Notes
        -----
        This returns a "deepcopy" of the edge, node, and
        graph attributes which attempts to completely copy
        all of the data and references.

        This is in contrast to the similar D=DiGraph(G) which returns a
        shallow copy of the data.

        See the Python copy module for more information on shallow
        and deep copies, http://docs.python.org/library/copy.html.
        """
        H=MultiGraph()
        H.name=self.name
        H.add_nodes_from(self)
        if reciprocal is True:
            H.add_edges_from( (u,v,key,deepcopy(data))
                              for u,nbrs in self.adjacency_iter()
                              for v,keydict in nbrs.items()
                              for key,data in keydict.items()
                              if self.has_edge(v,u,key))
        else:
            H.add_edges_from( (u,v,key,deepcopy(data))
                              for u,nbrs in self.adjacency_iter()
                              for v,keydict in nbrs.items()
                              for key,data in keydict.items())
        H.graph=deepcopy(self.graph)
        H.node=deepcopy(self.node)
        return H

    def subgraph(self, nbunch):
        """Return the subgraph induced on nodes in nbunch.

        The induced subgraph of the graph contains the nodes in nbunch
        and the edges between those nodes.

        Parameters
        ----------
        nbunch : list, iterable
            A container of nodes which will be iterated through once.

        Returns
        -------
        G : Graph
            A subgraph of the graph with the same edge attributes.

        Notes
        -----
        The graph, edge or node attributes just point to the original graph.
        So changes to the node or edge structure will not be reflected in
        the original graph while changes to the attributes will.

        To create a subgraph with its own copy of the edge/node attributes use:
        nx.Graph(G.subgraph(nbunch))

        If edge attributes are containers, a deep copy can be obtained using:
        G.subgraph(nbunch).copy()

        For an inplace reduction of a graph to a subgraph you can remove nodes:
        G.remove_nodes_from([ n in G if n not in set(nbunch)])

        Examples
        --------
        >>> G = nx.Graph()   # or DiGraph, MultiGraph, MultiDiGraph, etc
        >>> G.add_path([0,1,2,3])
        >>> H = G.subgraph([0,1,2])
        >>> H.edges()
        [(0, 1), (1, 2)]
        """
        bunch = self.nbunch_iter(nbunch)
        # create new graph and copy subgraph into it
        H = self.__class__()
        # copy node and attribute dictionaries
        for n in bunch:
            H.node[n]=self.node[n]
        # namespace shortcuts for speed
        H_succ=H.succ
        H_pred=H.pred
        self_succ=self.succ
        self_pred=self.pred
        # add nodes
        for n in H:
            H_succ[n]={}
            H_pred[n]={}
        # add edges
        for u in H_succ:
            Hnbrs=H_succ[u]
            for v,edgedict in self_succ[u].items():
                if v in H_succ:
                    # add both representations of edge: u-v and v-u
                    # they share the same edgedict
                    ed=edgedict.copy()
                    Hnbrs[v]=ed
                    H_pred[v][u]=ed
        H.graph=self.graph
        return H

    def reverse(self, copy=True):
        """Return the reverse of the graph.

        The reverse is a graph with the same nodes and edges
        but with the directions of the edges reversed.

        Parameters
        ----------
        copy : bool optional (default=True)
            If True, return a new DiGraph holding the reversed edges.
            If False, reverse the reverse graph is created using
            the original graph (this changes the original graph).
        """
        if copy:
            H = self.__class__(name="Reverse of (%s)"%self.name)
            H.add_nodes_from(self)
            H.add_edges_from( (v,u,k,deepcopy(d)) for u,v,k,d 
                              in self.edges(keys=True, data=True) )
            H.graph=deepcopy(self.graph)
            H.node=deepcopy(self.node)
        else:
            self.pred,self.succ=self.succ,self.pred
            self.adj=self.succ
            H=self
        return H