This file is indexed.

/usr/share/pyshared/nitime/index_utils.py is in python-nitime 0.5-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
""" Utilities for indexing into 2-d arrays, brought in from numpy 1.4, to
support use of older versions of numpy
"""

__all__ = ['tri', 'triu', 'tril', 'mask_indices', 'tril_indices',
           'tril_indices_from', 'triu_indices', 'triu_indices_from',
           ]

from numpy.core.numeric import asanyarray, subtract, arange, \
     greater_equal, multiply, ones, asarray, where

# Need to import numpy for the doctests! 
import numpy as np  

def tri(N, M=None, k=0, dtype=float):
    """
    Construct an array filled with ones at and below the given diagonal.

    Parameters
    ----------
    N : int
        Number of rows in the array.
    M : int, optional
        Number of columns in the array.
        By default, `M` is taken equal to `N`.
    k : int, optional
        The sub-diagonal below which the array is filled.
        `k` = 0 is the main diagonal, while `k` < 0 is below it,
        and `k` > 0 is above.  The default is 0.
    dtype : dtype, optional
        Data type of the returned array.  The default is float.

    Returns
    -------
    T : (N,M) ndarray
        Array with a lower triangle filled with ones, in other words
        ``T[i,j] == 1`` for ``i <= j + k``.

    Examples
    --------
    >>> np.tri(3, 5, 2, dtype=int)
    array([[1, 1, 1, 0, 0],
           [1, 1, 1, 1, 0],
           [1, 1, 1, 1, 1]])

    >>> np.tri(3, 5, -1)
    array([[ 0.,  0.,  0.,  0.,  0.],
           [ 1.,  0.,  0.,  0.,  0.],
           [ 1.,  1.,  0.,  0.,  0.]])

    """
    if M is None: M = N
    m = greater_equal(subtract.outer(arange(N), arange(M)),-k)
    return m.astype(dtype)

def tril(m, k=0):
    """
    Lower triangle of an array.

    Return a copy of an array with elements above the `k`-th diagonal zeroed.

    Parameters
    ----------
    m : array_like, shape (M, N)
        Input array.
    k : int
        Diagonal above which to zero elements.
        `k = 0` is the main diagonal, `k < 0` is below it and `k > 0` is above.

    Returns
    -------
    L : ndarray, shape (M, N)
        Lower triangle of `m`, of same shape and data-type as `m`.

    See Also
    --------
    triu

    Examples
    --------
    >>> np.tril([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1)
    array([[ 0,  0,  0],
           [ 4,  0,  0],
           [ 7,  8,  0],
           [10, 11, 12]])

    """
    m = asanyarray(m)
    out = multiply(tri(m.shape[0], m.shape[1], k=k, dtype=int),m)
    return out

def triu(m, k=0):
    """
    Upper triangle of an array.

    Construct a copy of a matrix with elements below the k-th diagonal zeroed.

    Please refer to the documentation for `tril`.

    See Also
    --------
    tril

    Examples
    --------
    >>> np.triu([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1)
    array([[ 1,  2,  3],
           [ 4,  5,  6],
           [ 0,  8,  9],
           [ 0,  0, 12]])

    """
    m = asanyarray(m)
    out = multiply((1-tri(m.shape[0], m.shape[1], k-1, int)),m)
    return out

# borrowed from John Hunter and matplotlib
def vander(x, N=None):
    """
    Generate a Van der Monde matrix.

    The columns of the output matrix are decreasing powers of the input
    vector.  Specifically, the i-th output column is the input vector to
    the power of ``N - i - 1``. Such a matrix with a geometric progression
    in each row is named Van Der Monde, or Vandermonde matrix, from
    Alexandre-Theophile Vandermonde.

    Parameters
    ----------
    x : array_like
        1-D input array.
    N : int, optional
        Order of (number of columns in) the output. If `N` is not specified,
        a square array is returned (``N = len(x)``).

    Returns
    -------
    out : ndarray
        Van der Monde matrix of order `N`.  The first column is ``x^(N-1)``,
        the second ``x^(N-2)`` and so forth.

    References
    ----------
    .. [1] Wikipedia, "Vandermonde matrix",
           http://en.wikipedia.org/wiki/Vandermonde_matrix

    Examples
    --------
    >>> x = np.array([1, 2, 3, 5])
    >>> N = 3
    >>> np.vander(x, N)
    array([[ 1,  1,  1],
           [ 4,  2,  1],
           [ 9,  3,  1],
           [25,  5,  1]])

    >>> np.column_stack([x**(N-1-i) for i in range(N)])
    array([[ 1,  1,  1],
           [ 4,  2,  1],
           [ 9,  3,  1],
           [25,  5,  1]])

    >>> x = np.array([1, 2, 3, 5])
    >>> np.vander(x)
    array([[  1,   1,   1,   1],
           [  8,   4,   2,   1],
           [ 27,   9,   3,   1],
           [125,  25,   5,   1]])

    """
    x = asarray(x)
    if N is None: N=len(x)
    X = ones( (len(x),N), x.dtype)
    for i in range(N-1):
        X[:,i] = x**(N-i-1)
    return X


def histogram2d(x,y, bins=10, range=None, normed=False, weights=None):
    """
    Compute the bi-dimensional histogram of two data samples.

    Parameters
    ----------
    x : array_like, shape(N,)
        A sequence of values to be histogrammed along the first dimension.
    y : array_like, shape(M,)
        A sequence of values to be histogrammed along the second dimension.
    bins : int or [int, int] or array_like or [array, array], optional
        The bin specification:

          * If int, the number of bins for the two dimensions (nx=ny=bins).
          * If [int, int], the number of bins in each dimension (nx, ny = bins).
          * If array_like, the bin edges for the two dimensions (x_edges=y_edges=bins).
          * If [array, array], the bin edges in each dimension (x_edges, y_edges = bins).

    range : array_like, shape(2,2), optional
        The leftmost and rightmost edges of the bins along each dimension
        (if not specified explicitly in the `bins` parameters):
        ``[[xmin, xmax], [ymin, ymax]]``. All values outside of this range
        will be considered outliers and not tallied in the histogram.
    normed : bool, optional
        If False, returns the number of samples in each bin. If True, returns
        the bin density, i.e. the bin count divided by the bin area.
    weights : array_like, shape(N,), optional
        An array of values ``w_i`` weighing each sample ``(x_i, y_i)``. Weights
        are normalized to 1 if `normed` is True. If `normed` is False, the
        values of the returned histogram are equal to the sum of the weights
        belonging to the samples falling into each bin.

    Returns
    -------
    H : ndarray, shape(nx, ny)
        The bi-dimensional histogram of samples `x` and `y`. Values in `x`
        are histogrammed along the first dimension and values in `y` are
        histogrammed along the second dimension.
    xedges : ndarray, shape(nx,)
        The bin edges along the first dimension.
    yedges : ndarray, shape(ny,)
        The bin edges along the second dimension.

    See Also
    --------
    histogram: 1D histogram
    histogramdd: Multidimensional histogram

    Notes
    -----
    When `normed` is True, then the returned histogram is the sample density,
    defined such that:

    .. math::
      \\sum_{i=0}^{nx-1} \\sum_{j=0}^{ny-1} H_{i,j} \\Delta x_i \\Delta y_j = 1

    where `H` is the histogram array and :math:`\\Delta x_i \\Delta y_i`
    the area of bin `{i,j}`.

    Please note that the histogram does not follow the Cartesian convention
    where `x` values are on the abcissa and `y` values on the ordinate axis.
    Rather, `x` is histogrammed along the first dimension of the array
    (vertical), and `y` along the second dimension of the array (horizontal).
    This ensures compatibility with `histogramdd`.

    Examples
    --------
    >>> x, y = np.random.randn(2, 100)
    >>> H, xedges, yedges = np.histogram2d(x, y, bins=(5, 8))
    >>> H.shape, xedges.shape, yedges.shape
    ((5, 8), (6,), (9,))

    """
    from numpy import histogramdd

    try:
        N = len(bins)
    except TypeError:
        N = 1

    if N != 1 and N != 2:
        xedges = yedges = asarray(bins, float)
        bins = [xedges, yedges]
    hist, edges = histogramdd([x,y], bins, range, normed, weights)
    return hist, edges[0], edges[1]


def mask_indices(n,mask_func,k=0):
    """
    Return the indices to access (n, n) arrays, given a masking function.

    Assume `mask_func` is a function that, for a square array a of size
    ``(n, n)`` with a possible offset argument `k`, when called as
    ``mask_func(a, k)`` returns a new array with zeros in certain locations
    (functions like `triu` or `tril` do precisely this). Then this function
    returns the indices where the non-zero values would be located.

    Parameters
    ----------
    n : int
        The returned indices will be valid to access arrays of shape (n, n).
    mask_func : callable
        A function whose call signature is similar to that of `triu`, `tril`.
        That is, ``mask_func(x, k)`` returns a boolean array, shaped like `x`.
        `k` is an optional argument to the function.
    k : scalar
        An optional argument which is passed through to `mask_func`. Functions
        like `triu`, `tril` take a second argument that is interpreted as an
        offset.

    Returns
    -------
    indices : tuple of arrays.
        The `n` arrays of indices corresponding to the locations where
        ``mask_func(np.ones((n, n)), k)`` is True.

    See Also
    --------
    triu, tril, triu_indices, tril_indices

    Notes
    -----
    .. versionadded:: 1.4.0

    Examples
    --------
    These are the indices that would allow you to access the upper triangular
    part of any 3x3 array:

    >>> iu = np.mask_indices(3, np.triu)

    For example, if `a` is a 3x3 array:

    >>> a = np.arange(9).reshape(3, 3)
    >>> a
    array([[0, 1, 2],
           [3, 4, 5],
           [6, 7, 8]])
    >>> a[iu]
    array([0, 1, 2, 4, 5, 8])

    An offset can be passed also to the masking function.  This gets us the
    indices starting on the first diagonal right of the main one:

    >>> iu1 = np.mask_indices(3, np.triu, 1)

    with which we now extract only three elements:

    >>> a[iu1]
    array([1, 2, 5])

    """
    m = ones((n,n),int)
    a = mask_func(m,k)
    return where(a != 0)


def tril_indices(n,k=0):
    """
    Return the indices for the lower-triangle of an (n, n) array.

    Parameters
    ----------
    n : int
      Sets the size of the arrays for which the returned indices will be valid.
    k : int, optional
      Diagonal offset (see `tril` for details).

    Returns
    -------
    inds : tuple of arrays
        The indices for the triangle. The returned tuple contains two arrays,
        each with the indices along one dimension of the array.

    See also
    --------
    triu_indices : similar function, for upper-triangular.
    mask_indices : generic function accepting an arbitrary mask function.
    tril, triu

    Notes
    -----
    .. versionadded:: 1.4.0

    Examples
    --------
    Compute two different sets of indices to access 4x4 arrays, one for the
    lower triangular part starting at the main diagonal, and one starting two
    diagonals further right:

    >>> il1 = np.tril_indices(4)
    >>> il2 = np.tril_indices(4, 2)

    Here is how they can be used with a sample array:

    >>> a = np.arange(16).reshape(4, 4)
    >>> a
    array([[ 0,  1,  2,  3],
           [ 4,  5,  6,  7],
           [ 8,  9, 10, 11],
           [12, 13, 14, 15]])

    Both for indexing:

    >>> a[il1]
    array([ 0,  4,  5,  8,  9, 10, 12, 13, 14, 15])

    And for assigning values:

    >>> a[il1] = -1
    >>> a
    array([[-1,  1,  2,  3],
           [-1, -1,  6,  7],
           [-1, -1, -1, 11],
           [-1, -1, -1, -1]])

    These cover almost the whole array (two diagonals right of the main one):

    >>> a[il2] = -10
    >>> a
    array([[-10, -10, -10,   3],
           [-10, -10, -10, -10],
           [-10, -10, -10, -10],
           [-10, -10, -10, -10]])

    """
    return mask_indices(n,tril,k)


def tril_indices_from(arr,k=0):
    """
    Return the indices for the lower-triangle of an (n, n) array.

    See `tril_indices` for full details.

    Parameters
    ----------
    n : int
      Sets the size of the arrays for which the returned indices will be valid.
    k : int, optional
      Diagonal offset (see `tril` for details).

    See Also
    --------
    tril_indices, tril

    Notes
    -----
    .. versionadded:: 1.4.0

    """
    if not arr.ndim==2 and arr.shape[0] == arr.shape[1]:
        raise ValueError("input array must be 2-d and square")
    return tril_indices(arr.shape[0],k)


def triu_indices(n,k=0):
    """
    Return the indices for the upper-triangle of an (n, n) array.

    Parameters
    ----------
    n : int
      Sets the size of the arrays for which the returned indices will be valid.
    k : int, optional
      Diagonal offset (see `triu` for details).

    Returns
    -------
    inds : tuple of arrays
        The indices for the triangle. The returned tuple contains two arrays,
        each with the indices along one dimension of the array.

    See also
    --------
    tril_indices : similar function, for lower-triangular.
    mask_indices : generic function accepting an arbitrary mask function.
    triu, tril

    Notes
    -----
    .. versionadded:: 1.4.0

    Examples
    --------
    Compute two different sets of indices to access 4x4 arrays, one for the
    upper triangular part starting at the main diagonal, and one starting two
    diagonals further right:

    >>> iu1 = np.triu_indices(4)
    >>> iu2 = np.triu_indices(4, 2)

    Here is how they can be used with a sample array:

    >>> a = np.arange(16).reshape(4, 4)
    >>> a
    array([[ 0,  1,  2,  3],
           [ 4,  5,  6,  7],
           [ 8,  9, 10, 11],
           [12, 13, 14, 15]])

    Both for indexing:

    >>> a[iu1]
    array([ 0,  1,  2,  3,  5,  6,  7, 10, 11, 15])

    And for assigning values:

    >>> a[iu1] = -1
    >>> a
    array([[-1, -1, -1, -1],
           [ 4, -1, -1, -1],
           [ 8,  9, -1, -1],
           [12, 13, 14, -1]])

    These cover only a small part of the whole array (two diagonals right
    of the main one):

    >>> a[iu2] = -10
    >>> a
    array([[ -1,  -1, -10, -10],
           [  4,  -1,  -1, -10],
           [  8,   9,  -1,  -1],
           [ 12,  13,  14,  -1]])

    """
    return mask_indices(n,triu,k)


def triu_indices_from(arr,k=0):
    """
    Return the indices for the lower-triangle of an (n, n) array.

    See `triu_indices` for full details.

    Parameters
    ----------
    n : int
      Sets the size of the arrays for which the returned indices will be valid.
    k : int, optional
      Diagonal offset (see `triu` for details).

    See Also
    --------
    triu_indices, triu

    Notes
    -----
    .. versionadded:: 1.4.0

    """
    if not arr.ndim==2 and arr.shape[0] == arr.shape[1]:
        raise ValueError("input array must be 2-d and square")
    return triu_indices(arr.shape[0],k)