/usr/share/pyshared/nitime/utils.py is in python-nitime 0.5-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 | """Miscellaneous utilities for time series analysis.
"""
from __future__ import print_function
import warnings
import numpy as np
from nitime.lazy import scipy_linalg as linalg
from nitime.lazy import scipy_signal as sig
from nitime.lazy import scipy_fftpack as fftpack
from nitime.lazy import scipy_signal_signaltools as signaltools
#-----------------------------------------------------------------------------
# Spectral estimation testing utilities
#-----------------------------------------------------------------------------
def square_window_spectrum(N, Fs):
r"""
Calculate the analytical spectrum of a square window
Parameters
----------
N : int
the size of the window
Fs : float
The sampling rate
Returns
-------
float array - the frequency bands, given N and FS
complex array: the power in the spectrum of the square window in the
frequency bands
Notes
-----
This is equation 21c in Harris (1978):
.. math::
W(\theta) = exp(-j \frac{N-1}{2} \theta) \frac{sin \frac{N\theta}{2}} {sin\frac{\theta}{2}}
F.J. Harris (1978). On the use of windows for harmonic analysis with the
discrete Fourier transform. Proceedings of the IEEE, 66:51-83
"""
f = get_freqs(Fs, N - 1)
j = 0 + 1j
a = -j * (N - 1) * f / 2
b = np.sin(N * f / 2.0)
c = np.sin(f / 2.0)
make = np.exp(a) * b / c
return f, make[1:] / make[1]
def hanning_window_spectrum(N, Fs):
r"""
Calculate the analytical spectrum of a Hanning window
Parameters
----------
N : int
The size of the window
Fs : float
The sampling rate
Returns
-------
float array - the frequency bands, given N and FS
complex array: the power in the spectrum of the square window in the
frequency bands
Notes
-----
This is equation 28b in Harris (1978):
.. math::
W(\theta) = 0.5 D(\theta) + 0.25 (D(\theta - \frac{2\pi}{N}) +
D(\theta + \frac{2\pi}{N}) ),
where:
.. math::
D(\theta) = exp(j\frac{\theta}{2})
\frac{sin\frac{N\theta}{2}}{sin\frac{\theta}{2}}
F.J. Harris (1978). On the use of windows for harmonic analysis with the
discrete Fourier transform. Proceedings of the IEEE, 66:51-83
"""
#A helper function
D = lambda theta, n: (
np.exp((0 + 1j) * theta / 2) * ((np.sin(n * theta / 2)) / (theta / 2)))
f = get_freqs(Fs, N)
make = 0.5 * D(f, N) + 0.25 * (D((f - (2 * np.pi / N)), N) +
D((f + (2 * np.pi / N)), N))
return f, make[1:] / make[1]
def ar_generator(N=512, sigma=1., coefs=None, drop_transients=0, v=None):
"""
This generates a signal u(n) = a1*u(n-1) + a2*u(n-2) + ... + v(n)
where v(n) is a stationary stochastic process with zero mean
and variance = sigma. XXX: confusing variance notation
Parameters
----------
N : int
sequence length
sigma : float
power of the white noise driving process
coefs : sequence
AR coefficients for k = 1, 2, ..., P
drop_transients : int
number of initial IIR filter transient terms to drop
v : ndarray
custom noise process
Parameters
----------
N : float
The number of points in the AR process generated. Default: 512
sigma : float
The variance of the noise in the AR process. Default: 1
coefs : list or array of floats
The AR model coefficients. Default: [2.7607, -3.8106, 2.6535, -0.9238],
which is a sequence shown to be well-estimated by an order 8 AR system.
drop_transients : float
How many samples to drop from the beginning of the sequence (the
transient phases of the process), so that the process can be considered
stationary.
v : float array
Optionally, input a specific sequence of noise samples (this over-rides
the sigma parameter). Default: None
Returns
-------
u : ndarray
the AR sequence
v : ndarray
the unit-variance innovations sequence
coefs : ndarray
feedback coefficients from k=1,len(coefs)
The form of the feedback coefficients is a little different than
the normal linear constant-coefficient difference equation. Therefore
the transfer function implemented in this method is
H(z) = sigma**0.5 / ( 1 - sum_k coefs(k)z**(-k) ) 1 <= k <= P
Examples
--------
>>> import nitime.algorithms as alg
>>> ar_seq, nz, alpha = ar_generator()
>>> fgrid, hz = alg.freq_response(1.0, a=np.r_[1, -alpha])
>>> sdf_ar = (hz * hz.conj()).real
"""
if coefs is None:
# this sequence is shown to be estimated well by an order 8 AR system
coefs = np.array([2.7607, -3.8106, 2.6535, -0.9238])
else:
coefs = np.asarray(coefs)
# The number of terms we generate must include the dropped transients, and
# then at the end we cut those out of the returned array.
N += drop_transients
# Typically uses just pass sigma in, but optionally they can provide their
# own noise vector, case in which we use it
if v is None:
v = np.random.normal(size=N)
v -= v[drop_transients:].mean()
b = [sigma ** 0.5]
a = np.r_[1, -coefs]
u = sig.lfilter(b, a, v)
# Only return the data after the drop_transients terms
return u[drop_transients:], v[drop_transients:], coefs
def circularize(x, bottom=0, top=2 * np.pi, deg=False):
"""Maps the input into the continuous interval (bottom, top) where
bottom defaults to 0 and top defaults to 2*pi
Parameters
----------
x : ndarray - the input array
bottom : float, optional (defaults to 0).
If you want to set the bottom of the interval into which you
modulu to something else than 0.
top : float, optional (defaults to 2*pi).
If you want to set the top of the interval into which you
modulu to something else than 2*pi
Returns
-------
The input array, mapped into the interval (bottom,top)
"""
x = np.asarray([x])
if (np.all(x[np.isfinite(x)] >= bottom) and
np.all(x[np.isfinite(x)] <= top)):
return np.squeeze(x)
else:
x[np.where(x < 0)] += top
x[np.where(x > top)] -= top
return np.squeeze(circularize(x, bottom=bottom, top=top))
def dB(x, power=True):
"""Convert the values in x to decibels.
If the values in x are in 'power'-like units, then set the power
flag accordingly
1) dB(x) = 10log10(x) (if power==True)
2) dB(x) = 10log10(|x|^2) = 20log10(|x|) (if power==False)
"""
if not power:
return 20 * np.log10(np.abs(x))
return 10 * np.log10(np.abs(x))
#-----------------------------------------------------------------------------
# Stats utils
#-----------------------------------------------------------------------------
def normalize_coherence(x, dof, copy=True):
"""
The generally accepted choice to transform coherence measures into
a more normal distribution
Parameters
----------
x : ndarray, real
square-root of magnitude-square coherence measures
dof : int
number of degrees of freedom in the multitaper model
copy : bool
Copy or return inplace modified x.
Returns
-------
y : ndarray, real
The transformed array.
"""
if copy:
x = x.copy()
np.arctanh(x, x)
x *= np.sqrt(dof)
return x
def normal_coherence_to_unit(y, dof, out=None):
"""
The inverse transform of the above normalization
"""
if out is None:
x = y / np.sqrt(dof)
else:
y /= np.sqrt(dof)
x = y
np.tanh(x, x)
return x
def expected_jk_variance(K):
"""Compute the expected value of the jackknife variance estimate
over K windows below. This expected value formula is based on the
asymptotic expansion of the trigamma function derived in
[Thompson_1994]
Paramters
---------
K : int
Number of tapers used in the multitaper method
Returns
-------
evar : float
Expected value of the jackknife variance estimator
"""
kf = float(K)
return ((1 / kf) * (kf - 1) / (kf - 0.5) *
((kf - 1) / (kf - 2)) ** 2 * (kf - 3) / (kf - 2))
def jackknifed_sdf_variance(yk, eigvals, sides='onesided', adaptive=True):
r"""
Returns the variance of the log-sdf estimated through jack-knifing
a group of independent sdf estimates.
Parameters
----------
yk : ndarray (K, L)
The K DFTs of the tapered sequences
eigvals : ndarray (K,)
The eigenvalues corresponding to the K DPSS tapers
sides : str, optional
Compute the jackknife pseudovalues over as one-sided or
two-sided spectra
adpative : bool, optional
Compute the adaptive weighting for each jackknife pseudovalue
Returns
-------
var : The estimate for log-sdf variance
Notes
-----
The jackknifed mean estimate is distributed about the true mean as
a Student's t-distribution with (K-1) degrees of freedom, and
standard error equal to sqrt(var). However, Thompson and Chave [1]
point out that this variance better describes the sample mean.
[1] Thomson D J, Chave A D (1991) Advances in Spectrum Analysis and Array
Processing (Prentice-Hall, Englewood Cliffs, NJ), 1, pp 58-113.
"""
K = yk.shape[0]
from nitime.algorithms import mtm_cross_spectrum
# the samples {S_k} are defined, with or without weights, as
# S_k = | x_k |**2
# | x_k |**2 = | y_k * d_k |**2 (with adaptive weights)
# | x_k |**2 = | y_k * sqrt(eig_k) |**2 (without adaptive weights)
all_orders = set(range(K))
jk_sdf = []
# get the leave-one-out estimates -- ideally, weights are recomputed
# for each leave-one-out. This is now the case.
for i in range(K):
items = list(all_orders.difference([i]))
spectra_i = np.take(yk, items, axis=0)
eigs_i = np.take(eigvals, items)
if adaptive:
# compute the weights
weights, _ = adaptive_weights(spectra_i, eigs_i, sides=sides)
else:
weights = eigs_i[:, None]
# this is the leave-one-out estimate of the sdf
jk_sdf.append(
mtm_cross_spectrum(
spectra_i, spectra_i, weights, sides=sides
)
)
# log-transform the leave-one-out estimates and the mean of estimates
jk_sdf = np.log(jk_sdf)
# jk_avg should be the mean of the log(jk_sdf(i))
jk_avg = jk_sdf.mean(axis=0)
K = float(K)
jk_var = (jk_sdf - jk_avg)
np.power(jk_var, 2, jk_var)
jk_var = jk_var.sum(axis=0)
# Thompson's recommended factor, eq 18
# Jackknifing Multitaper Spectrum Estimates
# IEEE SIGNAL PROCESSING MAGAZINE [20] JULY 2007
f = (K - 1) ** 2 / K / (K - 0.5)
jk_var *= f
return jk_var
def jackknifed_coh_variance(tx, ty, eigvals, adaptive=True):
"""
Returns the variance of the coherency between x and y, estimated
through jack-knifing the tapered samples in {tx, ty}.
Parameters
----------
tx : ndarray, (K, L)
The K complex spectra of tapered timeseries x
ty : ndarray, (K, L)
The K complex spectra of tapered timeseries y
eigvals : ndarray (K,)
The eigenvalues associated with the K DPSS tapers
Returns
-------
jk_var : ndarray
The variance computed in the transformed domain (see
normalize_coherence)
"""
K = tx.shape[0]
# calculate leave-one-out estimates of MSC (magnitude squared coherence)
jk_coh = []
# coherence is symmetric (right??)
sides = 'onesided'
all_orders = set(range(K))
import nitime.algorithms as alg
# get the leave-one-out estimates
for i in range(K):
items = list(all_orders.difference([i]))
tx_i = np.take(tx, items, axis=0)
ty_i = np.take(ty, items, axis=0)
eigs_i = np.take(eigvals, items)
if adaptive:
wx, _ = adaptive_weights(tx_i, eigs_i, sides=sides)
wy, _ = adaptive_weights(ty_i, eigs_i, sides=sides)
else:
wx = wy = eigs_i[:, None]
# The CSD
sxy_i = alg.mtm_cross_spectrum(tx_i, ty_i, (wx, wy), sides=sides)
# The PSDs
sxx_i = alg.mtm_cross_spectrum(tx_i, tx_i, wx, sides=sides)
syy_i = alg.mtm_cross_spectrum(ty_i, ty_i, wy, sides=sides)
# these are the | c_i | samples
msc = np.abs(sxy_i)
msc /= np.sqrt(sxx_i * syy_i)
jk_coh.append(msc)
jk_coh = np.array(jk_coh)
# now normalize the coherence estimates and take the mean
normalize_coherence(jk_coh, 2 * K - 2, copy=False) # inplace
jk_avg = np.mean(jk_coh, axis=0)
jk_var = (jk_coh - jk_avg)
np.power(jk_var, 2, jk_var)
jk_var = jk_var.sum(axis=0)
# Do/Don't use the alternative scaling here??
f = float(K - 1) / K
jk_var *= f
return jk_var
#-----------------------------------------------------------------------------
# Multitaper utils
#-----------------------------------------------------------------------------
def adaptive_weights(yk, eigvals, sides='onesided', max_iter=150):
r"""
Perform an iterative procedure to find the optimal weights for K
direct spectral estimators of DPSS tapered signals.
Parameters
----------
yk : ndarray (K, N)
The K DFTs of the tapered sequences
eigvals : ndarray, length-K
The eigenvalues of the DPSS tapers
sides : str
Whether to compute weights on a one-sided or two-sided spectrum
max_iter : int
Maximum number of iterations for weight computation
Returns
-------
weights, nu
The weights (array like sdfs), and the
"equivalent degrees of freedom" (array length-L)
Notes
-----
The weights to use for making the multitaper estimate, such that
:math:`S_{mt} = \sum_{k} |w_k|^2S_k^{mt} / \sum_{k} |w_k|^2`
If there are less than 3 tapers, then the adaptive weights are not
found. The square root of the eigenvalues are returned as weights,
and the degrees of freedom are 2*K
"""
from nitime.algorithms import mtm_cross_spectrum
K = len(eigvals)
if len(eigvals) < 3:
print("""
Warning--not adaptively combining the spectral estimators
due to a low number of tapers.
""")
# we'll hope this is a correct length for L
N = yk.shape[-1]
L = N / 2 + 1 if sides == 'onesided' else N
return (np.multiply.outer(np.sqrt(eigvals), np.ones(L)), 2 * K)
rt_eig = np.sqrt(eigvals)
# combine the SDFs in the traditional way in order to estimate
# the variance of the timeseries
N = yk.shape[1]
sdf = mtm_cross_spectrum(yk, yk, eigvals[:, None], sides=sides)
L = sdf.shape[-1]
var_est = np.sum(sdf, axis=-1) / N
bband_sup = (1-eigvals)*var_est
# The process is to iteratively switch solving for the following
# two expressions:
# (1) Adaptive Multitaper SDF:
# S^{mt}(f) = [ sum |d_k(f)|^2 S_k(f) ]/ sum |d_k(f)|^2
#
# (2) Weights
# d_k(f) = [sqrt(lam_k) S^{mt}(f)] / [lam_k S^{mt}(f) + E{B_k(f)}]
#
# Where lam_k are the eigenvalues corresponding to the DPSS tapers,
# and the expected value of the broadband bias function
# E{B_k(f)} is replaced by its full-band integration
# (1/2pi) int_{-pi}^{pi} E{B_k(f)} = sig^2(1-lam_k)
# start with an estimate from incomplete data--the first 2 tapers
sdf_iter = mtm_cross_spectrum(yk[:2], yk[:2], eigvals[:2, None],
sides=sides)
err = np.zeros((K, L))
# for numerical considerations, don't bother doing adaptive
# weighting after 150 dB down
min_pwr = sdf_iter.max() * 10 ** (-150/20.)
default_weights = np.where(sdf_iter < min_pwr)[0]
adaptiv_weights = np.where(sdf_iter >= min_pwr)[0]
w_def = rt_eig[:,None] * sdf_iter[default_weights]
w_def /= eigvals[:, None] * sdf_iter[default_weights] + bband_sup[:,None]
d_sdfs = np.abs(yk[:,adaptiv_weights])**2
if L < N:
d_sdfs *= 2
sdf_iter = sdf_iter[adaptiv_weights]
yk = yk[:,adaptiv_weights]
for n in range(max_iter):
d_k = rt_eig[:,None] * sdf_iter[None, :]
d_k /= eigvals[:, None]*sdf_iter[None, :] + bband_sup[:,None]
# Test for convergence -- this is overly conservative, since
# iteration only stops when all frequencies have converged.
# A better approach is to iterate separately for each freq, but
# that is a nonvectorized algorithm.
#sdf_iter = mtm_cross_spectrum(yk, yk, d_k, sides=sides)
sdf_iter = np.sum( d_k**2 * d_sdfs, axis=0 )
sdf_iter /= np.sum( d_k**2, axis=0 )
# Compute the cost function from eq 5.4 in Thomson 1982
cfn = eigvals[:,None] * (sdf_iter[None,:] - d_sdfs)
cfn /= (eigvals[:,None] * sdf_iter[None,:] + bband_sup[:,None])**2
cfn = np.sum(cfn, axis=0)
# there seem to be some pathological freqs sometimes ..
# this should be a good heuristic
if np.percentile(cfn**2, 95) < 1e-12:
break
else: # If you have reached maximum number of iterations
# Issue a warning and return non-converged weights:
e_s = 'Breaking due to iterative meltdown in '
e_s += 'nitime.utils.adaptive_weights.'
warnings.warn(e_s, RuntimeWarning)
weights = np.zeros( (K,L) )
weights[:,adaptiv_weights] = d_k
weights[:,default_weights] = w_def
nu = 2 * (weights ** 2).sum(axis=-2)
return weights, nu
def detect_lines(s, tapers, p=None, **taper_kws):
"""
Detect the presence of line spectra in s using the F-test
described in "Spectrum estimation and harmonic analysis" (Thompson 81).
Strategies for detecting harmonics in low SNR include increasing the
number of FFT points (NFFT keyword arg) and/or increasing the stability
of the spectral estimate by using more tapers (higher NW parameter).
s : ndarray
The sequence(s) to test. If s.ndim > 1, then test sequences in
the last axis in parallel
tapers : ndarray or container
Either the precomputed DPSS tapers, or the pair of parameters
(NW, K) needed to compute K tapers of length n_pts.
p : float
The confidence threshold: under the null hypothesis of
a locally white spectrum, there is a threshold such that
there is a (1-p)% chance of a line amplitude being larger
than that threshold. Only detect lines with amplitude greater
than this threshold. The default is 1/N, to control for false
positives.
taper_kws
Options for the tapered_spectra method, if no DPSS are provided.
Returns
-------
(freq, beta) : sequence
The frequencies (normalized in [0, .5]) and coefficients of the
complex exponentials detected in the spectrum. A pair is returned
for each sequence tested.
One can reconstruct the line components as such:
sn = 2*(beta[:,None]*np.exp(i*2*np.pi*np.arange(N)*freq[:,None])).real
sn = sn.sum(axis=0)
"""
from nitime.algorithms import tapered_spectra, dpss_windows
import scipy.stats.distributions as dists
import scipy.ndimage as ndimage
N = s.shape[-1]
# Some boiler-plate --
# 1) set up tapers
# 2) perform FFT on all windowed series
if not isinstance(tapers, np.ndarray):
# then tapers is (NW, K)
args = (N,) + tuple(tapers)
dpss, eigvals = dpss_windows(*args)
if taper_kws.pop('low_bias', False):
keepers = (eigvals > 0.9)
dpss = dpss[keepers]
tapers = dpss
# spectra is (n_arr, K, nfft)
spectra = tapered_spectra(s, tapers, **taper_kws)
nfft = spectra.shape[-1]
spectra = spectra[...,:nfft/2 + 1]
# Set up some data for the following calculations --
# get the DC component of the taper spectra
K = tapers.shape[0]
U0 = tapers.sum(axis=1)
U_sq = np.sum(U0**2)
# first order linear regression for mu to explain spectra
mu = np.sum( U0[:,None] * spectra, axis=-2 ) / U_sq
# numerator of F-stat -- strength of regression
numr = 0.5 * np.abs(mu)**2 * U_sq
numr[...,0] = 1; # don't care about DC
# denominator -- strength of residual
spectra = np.rollaxis(spectra, -2, 0)
U0.shape = (K,) + (1,) * (spectra.ndim-1)
denomr = spectra - U0*mu
denomr = np.sum(np.abs(denomr)**2, axis=0) / (2*K-2)
denomr[...,0] = 1;
f_stat = numr / denomr
# look for lines in each F-spectrum
if not p:
# the number of simultaneous tests are nfft/2, so this puts
# the expected value for false detection somewhere less than 1
p = 1.0/nfft
#thresh = dists.f.isf(p, 2, 2*K-2)
thresh = dists.f.isf(p, 2, K-1)
f_stat = np.atleast_2d(f_stat)
mu = np.atleast_2d(mu)
lines = ()
for fs, m in zip(f_stat, mu):
detected = np.where(fs > thresh)[0]
# do a quick pass through the detected lines to reject multiple
# hits within the 2NW resolution of the MT analysis -- approximate
# 2NW by K
ddiff = np.diff(detected)
flagged_groups, last_group = ndimage.label( (ddiff < K) )
for g in range(1,last_group+1):
idx = np.where(flagged_groups==g)[0]
idx = np.r_[idx, idx[-1]+1]
# keep the super-threshold point with largest amplitude
mx = np.argmax(np.abs(m[ detected[idx] ]))
i_sv = detected[idx[mx]]
detected[idx] = -1
detected[idx[mx]] = i_sv
detected = detected[detected>0]
if len(detected):
lines = lines + ( (detected/float(nfft), m[detected]), )
else:
lines = lines + ( (), )
if len(lines) == 1:
lines = lines[0]
return lines
#-----------------------------------------------------------------------------
# Eigensystem utils
#-----------------------------------------------------------------------------
# If we can get it, we want the cythonized version
try:
from _utils import tridisolve
# If that doesn't work, we define it here:
except ImportError:
def tridisolve(d, e, b, overwrite_b=True):
"""
Symmetric tridiagonal system solver,
from Golub and Van Loan, Matrix Computations pg 157
Parameters
----------
d : ndarray
main diagonal stored in d[:]
e : ndarray
superdiagonal stored in e[:-1]
b : ndarray
RHS vector
Returns
-------
x : ndarray
Solution to Ax = b (if overwrite_b is False). Otherwise solution is
stored in previous RHS vector b
"""
N = len(b)
# work vectors
dw = d.copy()
ew = e.copy()
if overwrite_b:
x = b
else:
x = b.copy()
for k in range(1, N):
# e^(k-1) = e(k-1) / d(k-1)
# d(k) = d(k) - e^(k-1)e(k-1) / d(k-1)
t = ew[k - 1]
ew[k - 1] = t / dw[k - 1]
dw[k] = dw[k] - t * ew[k - 1]
for k in range(1, N):
x[k] = x[k] - ew[k - 1] * x[k - 1]
x[N - 1] = x[N - 1] / dw[N - 1]
for k in range(N - 2, -1, -1):
x[k] = x[k] / dw[k] - ew[k] * x[k + 1]
if not overwrite_b:
return x
def tridi_inverse_iteration(d, e, w, x0=None, rtol=1e-8):
"""Perform an inverse iteration to find the eigenvector corresponding
to the given eigenvalue in a symmetric tridiagonal system.
Parameters
----------
d : ndarray
main diagonal of the tridiagonal system
e : ndarray
offdiagonal stored in e[:-1]
w : float
eigenvalue of the eigenvector
x0 : ndarray
initial point to start the iteration
rtol : float
tolerance for the norm of the difference of iterates
Returns
-------
e : ndarray
The converged eigenvector
"""
eig_diag = d - w
if x0 is None:
x0 = np.random.randn(len(d))
x_prev = np.zeros_like(x0)
norm_x = np.linalg.norm(x0)
# the eigenvector is unique up to sign change, so iterate
# until || |x^(n)| - |x^(n-1)| ||^2 < rtol
x0 /= norm_x
while np.linalg.norm(np.abs(x0) - np.abs(x_prev)) > rtol:
x_prev = x0.copy()
tridisolve(eig_diag, e, x0)
norm_x = np.linalg.norm(x0)
x0 /= norm_x
return x0
#-----------------------------------------------------------------------------
# Correlation/Covariance utils
#-----------------------------------------------------------------------------
def remove_bias(x, axis):
"Subtracts an estimate of the mean from signal x at axis"
padded_slice = [slice(d) for d in x.shape]
padded_slice[axis] = np.newaxis
mn = np.mean(x, axis=axis)
return x - mn[tuple(padded_slice)]
def crosscov(x, y, axis=-1, all_lags=False, debias=True, normalize=True):
"""Returns the crosscovariance sequence between two ndarrays.
This is performed by calling fftconvolve on x, y[::-1]
Parameters
----------
x : ndarray
y : ndarray
axis : time axis
all_lags : {True/False}
whether to return all nonzero lags, or to clip the length of s_xy
to be the length of x and y. If False, then the zero lag covariance
is at index 0. Otherwise, it is found at (len(x) + len(y) - 1)/2
debias : {True/False}
Always removes an estimate of the mean along the axis, unless
told not to (eg X and Y are known zero-mean)
Returns
-------
cxy : ndarray
The crosscovariance function
Notes
-----
cross covariance of processes x and y is defined as
.. math::
C_{xy}[k]=E\{(X(n+k)-E\{X\})(Y(n)-E\{Y\})^{*}\}
where X and Y are discrete, stationary (or ergodic) random processes
Also note that this routine is the workhorse for all auto/cross/cov/corr
functions.
"""
if x.shape[axis] != y.shape[axis]:
raise ValueError(
'crosscov() only works on same-length sequences for now'
)
if debias:
x = remove_bias(x, axis)
y = remove_bias(y, axis)
slicing = [slice(d) for d in x.shape]
slicing[axis] = slice(None, None, -1)
cxy = fftconvolve(x, y[tuple(slicing)].conj(), axis=axis, mode='full')
N = x.shape[axis]
if normalize:
cxy /= N
if all_lags:
return cxy
slicing[axis] = slice(N - 1, 2 * N - 1)
return cxy[tuple(slicing)]
def crosscorr(x, y, **kwargs):
"""
Returns the crosscorrelation sequence between two ndarrays.
This is performed by calling fftconvolve on x, y[::-1]
Parameters
----------
x : ndarray
y : ndarray
axis : time axis
all_lags : {True/False}
whether to return all nonzero lags, or to clip the length of r_xy
to be the length of x and y. If False, then the zero lag correlation
is at index 0. Otherwise, it is found at (len(x) + len(y) - 1)/2
Returns
-------
rxy : ndarray
The crosscorrelation function
Notes
-----
cross correlation is defined as
.. math::
R_{xy}[k]=E\{X[n+k]Y^{*}[n]\}
where X and Y are discrete, stationary (ergodic) random processes
"""
# just make the same computation as the crosscovariance,
# but without subtracting the mean
kwargs['debias'] = False
rxy = crosscov(x, y, **kwargs)
return rxy
def autocov(x, **kwargs):
"""Returns the autocovariance of signal s at all lags.
Parameters
----------
x : ndarray
axis : time axis
all_lags : {True/False}
whether to return all nonzero lags, or to clip the length of r_xy
to be the length of x and y. If False, then the zero lag correlation
is at index 0. Otherwise, it is found at (len(x) + len(y) - 1)/2
Returns
-------
cxx : ndarray
The autocovariance function
Notes
-----
Adheres to the definition
.. math::
C_{xx}[k]=E\{(X[n+k]-E\{X\})(X[n]-E\{X\})^{*}\}
where X is a discrete, stationary (ergodic) random process
"""
# only remove the mean once, if needed
debias = kwargs.pop('debias', True)
axis = kwargs.get('axis', -1)
if debias:
x = remove_bias(x, axis)
kwargs['debias'] = False
return crosscov(x, x, **kwargs)
def autocorr(x, **kwargs):
"""Returns the autocorrelation of signal s at all lags.
Parameters
----------
x : ndarray
axis : time axis
all_lags : {True/False}
whether to return all nonzero lags, or to clip the length of r_xy
to be the length of x and y. If False, then the zero lag correlation
is at index 0. Otherwise, it is found at (len(x) + len(y) - 1)/2
Notes
-----
Adheres to the definition
.. math::
R_{xx}[k]=E\{X[n+k]X^{*}[n]\}
where X is a discrete, stationary (ergodic) random process
"""
# do same computation as autocovariance,
# but without subtracting the mean
kwargs['debias'] = False
return autocov(x, **kwargs)
def fftconvolve(in1, in2, mode="full", axis=None):
""" Convolve two N-dimensional arrays using FFT. See convolve.
This is a fix of scipy.signal.fftconvolve, adding an axis argument and
importing locally the stuff only needed for this function
"""
s1 = np.array(in1.shape)
s2 = np.array(in2.shape)
complex_result = (np.issubdtype(in1.dtype, np.complex) or
np.issubdtype(in2.dtype, np.complex))
if axis is None:
size = s1 + s2 - 1
fslice = tuple([slice(0, int(sz)) for sz in size])
else:
equal_shapes = s1 == s2
# allow equal_shapes[axis] to be False
equal_shapes[axis] = True
assert equal_shapes.all(), 'Shape mismatch on non-convolving axes'
size = s1[axis] + s2[axis] - 1
fslice = [slice(l) for l in s1]
fslice[axis] = slice(0, int(size))
fslice = tuple(fslice)
# Always use 2**n-sized FFT
fsize = 2 ** int(np.ceil(np.log2(size)))
if axis is None:
IN1 = fftpack.fftn(in1, fsize)
IN1 *= fftpack.fftn(in2, fsize)
ret = fftpack.ifftn(IN1)[fslice].copy()
else:
IN1 = fftpack.fft(in1, fsize, axis=axis)
IN1 *= fftpack.fft(in2, fsize, axis=axis)
ret = fftpack.ifft(IN1, axis=axis)[fslice].copy()
del IN1
if not complex_result:
ret = ret.real
if mode == "full":
return ret
elif mode == "same":
if np.product(s1, axis=0) > np.product(s2, axis=0):
osize = s1
else:
osize = s2
return signaltools._centered(ret, osize)
elif mode == "valid":
return signaltools._centered(ret, abs(s2 - s1) + 1)
#-----------------------------------------------------------------------------
# 'get' utils
#-----------------------------------------------------------------------------
def get_freqs(Fs, n):
"""Returns the center frequencies of the frequency decomposotion of a time
series of length n, sampled at Fs Hz"""
return np.linspace(0, float(Fs) / 2, float(n) / 2 + 1)
def circle_to_hz(omega, Fsamp):
"""For a frequency grid spaced on the unit circle of an imaginary plane,
return the corresponding freqency grid in Hz.
"""
return Fsamp * omega / (2 * np.pi)
def get_bounds(f, lb=0, ub=None):
""" Find the indices of the lower and upper bounds within an array f
Parameters
----------
f, array
lb,ub, float
Returns
-------
lb_idx, ub_idx: the indices into 'f' which correspond to values bounded
between ub and lb in that array
"""
lb_idx = np.searchsorted(f, lb, 'left')
if ub == None:
ub_idx = len(f)
else:
ub_idx = np.searchsorted(f, ub, 'right')
return lb_idx, ub_idx
def unwrap_phases(a):
"""
Changes consecutive jumps larger than pi to their 2*pi complement.
"""
pi = np.pi
diffs = np.diff(a)
mod_diffs = np.mod(diffs + pi, 2 * pi) - pi
neg_pi_idx = np.where(mod_diffs == -1 * np.pi)
pos_idx = np.where(diffs > 0)
this_idx = np.intersect1d(neg_pi_idx[0], pos_idx[0])
mod_diffs[this_idx] = pi
correction = mod_diffs - diffs
correction[np.where(np.abs(diffs) < pi)] = 0
a[1:] += np.cumsum(correction)
return a
def multi_intersect(input):
""" A function for finding the intersection of several different arrays
Parameters
----------
input is a tuple of arrays, with all the different arrays
Returns
-------
array - the intersection of the inputs
Notes
-----
Simply runs intersect1d iteratively on the inputs
"""
arr = input[0].ravel()
for this in input[1:]:
arr = np.intersect1d(arr, this.ravel())
return arr
def zero_pad(time_series, NFFT):
"""
Pad a time-series with zeros on either side, depending on its length
Parameters
----------
time_series : n-d array
Time-series data with time as the last dimension
NFFT : int
The length to pad the data up to.
"""
n_dims = len(time_series.shape)
n_time_points = time_series.shape[-1]
if n_dims>1:
n_channels = time_series.shape[:-1]
shape_out = n_channels + (NFFT,)
else:
shape_out = NFFT
# zero pad if time_series is too short
if n_time_points < NFFT:
tmp = time_series
time_series = np.zeros(shape_out, time_series.dtype)
time_series[..., :n_time_points] = tmp
del tmp
return time_series
#-----------------------------------------------------------------------------
# Numpy utilities - Note: these have been sent into numpy itself, so eventually
# we'll be able to get rid of them here.
#-----------------------------------------------------------------------------
def fill_diagonal(a, val):
"""Fill the main diagonal of the given array of any dimensionality.
For an array with ndim > 2, the diagonal is the list of locations with
indices a[i,i,...,i], all identical.
This function modifies the input array in-place, it does not return a
value.
This functionality can be obtained via diag_indices(), but internally this
version uses a much faster implementation that never constructs the indices
and uses simple slicing.
Parameters
----------
a : array, at least 2-dimensional.
Array whose diagonal is to be filled, it gets modified in-place.
val : scalar
Value to be written on the diagonal, its type must be compatible with
that of the array a.
Examples
--------
>>> a = np.zeros((3,3),int)
>>> fill_diagonal(a,5)
>>> a
array([[5, 0, 0],
[0, 5, 0],
[0, 0, 5]])
The same function can operate on a 4-d array:
>>> a = np.zeros((3,3,3,3),int)
>>> fill_diagonal(a,4)
We only show a few blocks for clarity:
>>> a[0,0]
array([[4, 0, 0],
[0, 0, 0],
[0, 0, 0]])
>>> a[1,1]
array([[0, 0, 0],
[0, 4, 0],
[0, 0, 0]])
>>> a[2,2]
array([[0, 0, 0],
[0, 0, 0],
[0, 0, 4]])
See also
--------
- diag_indices: indices to access diagonals given shape information.
- diag_indices_from: indices to access diagonals given an array.
"""
if a.ndim < 2:
raise ValueError("array must be at least 2-d")
if a.ndim == 2:
# Explicit, fast formula for the common case. For 2-d arrays, we
# accept rectangular ones.
step = a.shape[1] + 1
else:
# For more than d=2, the strided formula is only valid for arrays with
# all dimensions equal, so we check first.
if not np.alltrue(np.diff(a.shape) == 0):
raise ValueError("All dimensions of input must be of equal length")
step = np.cumprod((1,) + a.shape[:-1]).sum()
# Write the value out into the diagonal.
a.flat[::step] = val
def diag_indices(n, ndim=2):
"""Return the indices to access the main diagonal of an array.
This returns a tuple of indices that can be used to access the main
diagonal of an array with ndim (>=2) dimensions and shape (n,n,...,n). For
ndim=2 this is the usual diagonal, for ndim>2 this is the set of indices
to access A[i,i,...,i] for i=[0..n-1].
Parameters
----------
n : int
The size, along each dimension, of the arrays for which the returned
indices can be used.
ndim : int, optional
The number of dimensions
Examples
--------
Create a set of indices to access the diagonal of a (4,4) array:
>>> di = diag_indices(4)
>>> a = np.array([[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]])
>>> a
array([[ 1, 2, 3, 4],
[ 5, 6, 7, 8],
[ 9, 10, 11, 12],
[13, 14, 15, 16]])
>>> a[di] = 100
>>> a
array([[100, 2, 3, 4],
[ 5, 100, 7, 8],
[ 9, 10, 100, 12],
[ 13, 14, 15, 100]])
Now, we create indices to manipulate a 3-d array:
>>> d3 = diag_indices(2,3)
And use it to set the diagonal of a zeros array to 1:
>>> a = np.zeros((2,2,2),int)
>>> a[d3] = 1
>>> a
array([[[1, 0],
[0, 0]],
<BLANKLINE>
[[0, 0],
[0, 1]]])
See also
--------
- diag_indices_from: create the indices based on the shape of an existing
array.
"""
idx = np.arange(n)
return (idx,) * ndim
def diag_indices_from(arr):
"""Return the indices to access the main diagonal of an n-dimensional
array.
See diag_indices() for full details.
Parameters
----------
arr : array, at least 2-d
"""
if not arr.ndim >= 2:
raise ValueError("input array must be at least 2-d")
# For more than d=2, the strided formula is only valid for arrays with
# all dimensions equal, so we check first.
if not np.alltrue(np.diff(arr.shape) == 0):
raise ValueError("All dimensions of input must be of equal length")
return diag_indices(arr.shape[0], arr.ndim)
def mask_indices(n, mask_func, k=0):
"""Return the indices to access (n,n) arrays, given a masking function.
Assume mask_func() is a function that, for a square array a of size (n,n)
with a possible offset argument k, when called as mask_func(a,k) returns a
new array with zeros in certain locations (functions like triu() or tril()
do precisely this). Then this function returns the indices where the
non-zero values would be located.
Parameters
----------
n : int
The returned indices will be valid to access arrays of shape (n,n).
mask_func : callable
A function whose api is similar to that of numpy.tri{u,l}. That is,
mask_func(x,k) returns a boolean array, shaped like x. k is an optional
argument to the function.
k : scalar
An optional argument which is passed through to mask_func(). Functions
like tri{u,l} take a second argument that is interpreted as an offset.
Returns
-------
indices : an n-tuple of index arrays.
The indices corresponding to the locations where mask_func(ones((n,n)),k)
is True.
Examples
--------
These are the indices that would allow you to access the upper triangular
part of any 3x3 array:
>>> iu = mask_indices(3,np.triu)
For example, if `a` is a 3x3 array:
>>> a = np.arange(9).reshape(3,3)
>>> a
array([[0, 1, 2],
[3, 4, 5],
[6, 7, 8]])
Then:
>>> a[iu]
array([0, 1, 2, 4, 5, 8])
An offset can be passed also to the masking function. This gets us the
indices starting on the first diagonal right of the main one:
>>> iu1 = mask_indices(3,np.triu,1)
with which we now extract only three elements:
>>> a[iu1]
array([1, 2, 5])
"""
m = np.ones((n, n), int)
a = mask_func(m, k)
return np.where(a != 0)
def tril_indices(n, k=0):
"""Return the indices for the lower-triangle of an (n,n) array.
Parameters
----------
n : int
Sets the size of the arrays for which the returned indices will be valid.
k : int, optional
Diagonal offset (see tril() for details).
Examples
--------
Commpute two different sets of indices to access 4x4 arrays, one for the
lower triangular part starting at the main diagonal, and one starting two
diagonals further right:
>>> il1 = tril_indices(4)
>>> il2 = tril_indices(4,2)
Here is how they can be used with a sample array:
>>> a = np.array([[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]])
>>> a
array([[ 1, 2, 3, 4],
[ 5, 6, 7, 8],
[ 9, 10, 11, 12],
[13, 14, 15, 16]])
Both for indexing:
>>> a[il1]
array([ 1, 5, 6, 9, 10, 11, 13, 14, 15, 16])
And for assigning values:
>>> a[il1] = -1
>>> a
array([[-1, 2, 3, 4],
[-1, -1, 7, 8],
[-1, -1, -1, 12],
[-1, -1, -1, -1]])
These cover almost the whole array (two diagonals right of the main one):
>>> a[il2] = -10
>>> a
array([[-10, -10, -10, 4],
[-10, -10, -10, -10],
[-10, -10, -10, -10],
[-10, -10, -10, -10]])
See also
--------
- triu_indices : similar function, for upper-triangular.
- mask_indices : generic function accepting an arbitrary mask function.
"""
return mask_indices(n, np.tril, k)
def tril_indices_from(arr, k=0):
"""Return the indices for the lower-triangle of an (n,n) array.
See tril_indices() for full details.
Parameters
----------
n : int
Sets the size of the arrays for which the returned indices will be valid.
k : int, optional
Diagonal offset (see tril() for details).
"""
if not arr.ndim == 2 and arr.shape[0] == arr.shape[1]:
raise ValueError("input array must be 2-d and square")
return tril_indices(arr.shape[0], k)
def triu_indices(n, k=0):
"""Return the indices for the upper-triangle of an (n,n) array.
Parameters
----------
n : int
Sets the size of the arrays for which the returned indices will be valid.
k : int, optional
Diagonal offset (see triu() for details).
Examples
--------
Commpute two different sets of indices to access 4x4 arrays, one for the
upper triangular part starting at the main diagonal, and one starting two
diagonals further right:
>>> iu1 = triu_indices(4)
>>> iu2 = triu_indices(4,2)
Here is how they can be used with a sample array:
>>> a = np.array([[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]])
>>> a
array([[ 1, 2, 3, 4],
[ 5, 6, 7, 8],
[ 9, 10, 11, 12],
[13, 14, 15, 16]])
Both for indexing:
>>> a[iu1]
array([ 1, 2, 3, 4, 6, 7, 8, 11, 12, 16])
And for assigning values:
>>> a[iu1] = -1
>>> a
array([[-1, -1, -1, -1],
[ 5, -1, -1, -1],
[ 9, 10, -1, -1],
[13, 14, 15, -1]])
These cover almost the whole array (two diagonals right of the main one):
>>> a[iu2] = -10
>>> a
array([[ -1, -1, -10, -10],
[ 5, -1, -1, -10],
[ 9, 10, -1, -1],
[ 13, 14, 15, -1]])
See also
--------
- tril_indices : similar function, for lower-triangular.
- mask_indices : generic function accepting an arbitrary mask function.
"""
return mask_indices(n, np.triu, k)
def triu_indices_from(arr, k=0):
"""Return the indices for the lower-triangle of an (n,n) array.
See triu_indices() for full details.
Parameters
----------
n : int
Sets the size of the arrays for which the returned indices will be valid.
k : int, optional
Diagonal offset (see triu() for details).
"""
if not arr.ndim == 2 and arr.shape[0] == arr.shape[1]:
raise ValueError("input array must be 2-d and square")
return triu_indices(arr.shape[0], k)
def structured_rand_arr(size, sample_func=np.random.random,
ltfac=None, utfac=None, fill_diag=None):
"""Make a structured random 2-d array of shape (size,size).
If no optional arguments are given, a symmetric array is returned.
Parameters
----------
size : int
Determines the shape of the output array: (size,size).
sample_func : function, optional.
Must be a function which when called with a 2-tuple of ints, returns a
2-d array of that shape. By default, np.random.random is used, but any
other sampling function can be used as long as matches this API.
utfac : float, optional
Multiplicative factor for the upper triangular part of the matrix.
ltfac : float, optional
Multiplicative factor for the lower triangular part of the matrix.
fill_diag : float, optional
If given, use this value to fill in the diagonal. Otherwise the diagonal
will contain random elements.
Examples
--------
>>> np.random.seed(0) # for doctesting
>>> np.set_printoptions(precision=4) # for doctesting
>>> structured_rand_arr(4)
array([[ 0.5488, 0.7152, 0.6028, 0.5449],
[ 0.7152, 0.6459, 0.4376, 0.8918],
[ 0.6028, 0.4376, 0.7917, 0.5289],
[ 0.5449, 0.8918, 0.5289, 0.0871]])
>>> structured_rand_arr(4,ltfac=-10,utfac=10,fill_diag=0.5)
array([[ 0.5 , 8.3262, 7.7816, 8.7001],
[-8.3262, 0.5 , 4.6148, 7.8053],
[-7.7816, -4.6148, 0.5 , 9.4467],
[-8.7001, -7.8053, -9.4467, 0.5 ]])
"""
# Make a random array from the given sampling function
rmat = sample_func((size, size))
# And the empty one we'll then fill in to return
out = np.empty_like(rmat)
# Extract indices for upper-triangle, lower-triangle and diagonal
uidx = triu_indices(size, 1)
lidx = tril_indices(size, -1)
didx = diag_indices(size)
# Extract each part from the original and copy it to the output, possibly
# applying multiplicative factors. We check the factors instead of
# defaulting to 1.0 to avoid unnecessary floating point multiplications
# which could be noticeable for very large sizes.
if utfac:
out[uidx] = utfac * rmat[uidx]
else:
out[uidx] = rmat[uidx]
if ltfac:
out[lidx] = ltfac * rmat.T[lidx]
else:
out[lidx] = rmat.T[lidx]
# If fill_diag was provided, use it; otherwise take the values in the
# diagonal from the original random array.
if fill_diag is not None:
out[didx] = fill_diag
else:
out[didx] = rmat[didx]
return out
def symm_rand_arr(size, sample_func=np.random.random, fill_diag=None):
"""Make a symmetric random 2-d array of shape (size,size).
Parameters
----------
n : int
Size of the output array.
sample_func : function, optional.
Must be a function which when called with a 2-tuple of ints, returns a
2-d array of that shape. By default, np.random.random is used, but any
other sampling function can be used as long as matches this API.
fill_diag : float, optional
If given, use this value to fill in the diagonal. Useful for
Examples
--------
>>> np.random.seed(0) # for doctesting
>>> np.set_printoptions(precision=4) # for doctesting
>>> symm_rand_arr(4)
array([[ 0.5488, 0.7152, 0.6028, 0.5449],
[ 0.7152, 0.6459, 0.4376, 0.8918],
[ 0.6028, 0.4376, 0.7917, 0.5289],
[ 0.5449, 0.8918, 0.5289, 0.0871]])
>>> symm_rand_arr(4,fill_diag=4)
array([[ 4. , 0.8326, 0.7782, 0.87 ],
[ 0.8326, 4. , 0.4615, 0.7805],
[ 0.7782, 0.4615, 4. , 0.9447],
[ 0.87 , 0.7805, 0.9447, 4. ]])
"""
return structured_rand_arr(size, sample_func, fill_diag=fill_diag)
def antisymm_rand_arr(size, sample_func=np.random.random):
"""Make an anti-symmetric random 2-d array of shape (size,size).
Parameters
----------
n : int
Size of the output array.
sample_func : function, optional.
Must be a function which when called with a 2-tuple of ints, returns a
2-d array of that shape. By default, np.random.random is used, but any
other sampling function can be used as long as matches this API.
Examples
--------
>>> np.random.seed(0) # for doctesting
>>> np.set_printoptions(precision=4) # for doctesting
>>> antisymm_rand_arr(4)
array([[ 0. , 0.7152, 0.6028, 0.5449],
[-0.7152, 0. , 0.4376, 0.8918],
[-0.6028, -0.4376, 0. , 0.5289],
[-0.5449, -0.8918, -0.5289, 0. ]])
"""
return structured_rand_arr(size, sample_func, ltfac=-1.0, fill_diag=0)
# --------brainx utils------------------------------------------------------
# These utils were copied over from brainx - needed for viz
def threshold_arr(cmat, threshold=0.0, threshold2=None):
"""Threshold values from the input array.
Parameters
----------
cmat : array
threshold : float, optional.
First threshold.
threshold2 : float, optional.
Second threshold.
Returns
-------
indices, values: a tuple with ndim+1
Examples
--------
>>> np.set_printoptions(precision=4) # For doctesting
>>> a = np.linspace(0,0.2,5)
>>> a
array([ 0. , 0.05, 0.1 , 0.15, 0.2 ])
>>> threshold_arr(a,0.1)
(array([3, 4]), array([ 0.15, 0.2 ]))
With two thresholds:
>>> threshold_arr(a,0.1,0.2)
(array([0, 1]), array([ 0. , 0.05]))
"""
# Select thresholds
if threshold2 is None:
th_low = -np.inf
th_hi = threshold
else:
th_low = threshold
th_hi = threshold2
# Mask out the values we are actually going to use
idx = np.where((cmat < th_low) | (cmat > th_hi))
vals = cmat[idx]
return idx + (vals,)
def thresholded_arr(arr, threshold=0.0, threshold2=None, fill_val=np.nan):
"""Threshold values from the input matrix and return a new matrix.
Parameters
----------
arr : array
threshold : float
First threshold.
threshold2 : float, optional.
Second threshold.
Returns
-------
An array shaped like the input, with the values outside the threshold
replaced with fill_val.
Examples
--------
"""
a2 = np.empty_like(arr)
a2.fill(fill_val)
mth = threshold_arr(arr, threshold, threshold2)
idx, vals = mth[:-1], mth[-1]
a2[idx] = vals
return a2
def rescale_arr(arr, amin, amax):
"""Rescale an array to a new range.
Return a new array whose range of values is (amin,amax).
Parameters
----------
arr : array-like
amin : float
new minimum value
amax : float
new maximum value
Examples
--------
>>> a = np.arange(5)
>>> rescale_arr(a,3,6)
array([ 3. , 3.75, 4.5 , 5.25, 6. ])
"""
# old bounds
m = arr.min()
M = arr.max()
# scale/offset
s = float(amax - amin) / (M - m)
d = amin - s * m
# Apply clip before returning to cut off possible overflows outside the
# intended range due to roundoff error, so that we can absolutely guarantee
# that on output, there are no values > amax or < amin.
return np.clip(s * arr + d, amin, amax)
def minmax_norm(arr, mode='direct', folding_edges=None):
"""Minmax_norm an array to [0,1] range.
By default, this simply rescales the input array to [0,1]. But it has a
special 'folding' mode that allows for the normalization of an array with
negative and positive values by mapping the negative values to their
flipped sign
Parameters
----------
arr : 1d array
mode : string, one of ['direct','folding']
folding_edges : (float,float)
Only needed for folding mode, ignored in 'direct' mode.
Examples
--------
>>> np.set_printoptions(precision=4) # for doctesting
>>> a = np.linspace(0.3,0.8,4)
>>> minmax_norm(a)
array([ 0. , 0.3333, 0.6667, 1. ])
>>> b = np.concatenate([np.linspace(-0.7,-0.3,3),
... np.linspace(0.3,0.8,3)])
>>> b
array([-0.7 , -0.5 , -0.3 , 0.3 , 0.55, 0.8 ])
>>> minmax_norm(b,'folding',[-0.3,0.3])
array([ 0.8, 0.4, 0. , 0. , 0.5, 1. ])
"""
if mode == 'direct':
return rescale_arr(arr, 0, 1)
else:
fa, fb = folding_edges
amin, amax = arr.min(), arr.max()
ra, rb = float(fa - amin), float(amax - fb) # in case inputs are ints
if ra < 0 or rb < 0:
raise ValueError("folding edges must be within array range")
greater = arr >= fb
upper_idx = greater.nonzero()
lower_idx = (~greater).nonzero()
# Two folding scenarios, we map the thresholds to zero but the upper
# ranges must retain comparability.
if ra > rb:
lower = 1.0 - rescale_arr(arr[lower_idx], 0, 1.0)
upper = rescale_arr(arr[upper_idx], 0, float(rb) / ra)
else:
upper = rescale_arr(arr[upper_idx], 0, 1)
# The lower range is trickier: we need to rescale it and then flip
# it, so the edge goes to 0.
resc_a = float(ra) / rb
lower = rescale_arr(arr[lower_idx], 0, resc_a)
lower = resc_a - lower
# Now, make output array
out = np.empty_like(arr)
out[lower_idx] = lower
out[upper_idx] = upper
return out
#---------- intersect coords ----------------------------------------------
def intersect_coords(coords1, coords2):
"""For two sets of coordinates, find the coordinates that are common to
both, where the dimensionality is the coords1.shape[0]"""
# Find the longer one
if coords1.shape[-1] > coords2.shape[-1]:
coords_long = coords1
coords_short = coords2
else:
coords_long = coords2
coords_short = coords1
ans = np.array([[], [], []], dtype='int') # Initialize as a 3 row variable
# Loop over the longer of the coordinate sets
for i in range(coords_long.shape[-1]):
# For each coordinate:
this_coords = coords_long[:, i]
# Find the matches in the other set of coordinates:
x = np.where(coords_short[0, :] == this_coords[0])[0]
y = np.where(coords_short[1, :] == this_coords[1])[0]
z = np.where(coords_short[2, :] == this_coords[2])[0]
# Use intersect1d, such that there can be more than one match (and the
# size of idx will reflect how many such matches exist):
idx = np.intersect1d(np.intersect1d(x, y), z)
# Append the places where there are matches in all three dimensions:
if len(idx):
ans = np.hstack([ans, coords_short[:, idx]])
return ans
#---------- Time Series Stats ----------------------------------------
def zscore(time_series, axis=-1):
"""Returns the z-score of each point of the time series
along a given axis of the array time_series.
Parameters
----------
time_series : ndarray
an array of time series
axis : int, optional
the axis of time_series along which to compute means and stdevs
Returns
_______
zt : ndarray
the renormalized time series array
"""
time_series = np.asarray(time_series)
et = time_series.mean(axis=axis)
st = time_series.std(axis=axis)
sl = [slice(None)] * len(time_series.shape)
sl[axis] = np.newaxis
zt = time_series - et[sl]
zt /= st[sl]
return zt
def percent_change(ts, ax=-1):
"""Returns the % signal change of each point of the times series
along a given axis of the array time_series
Parameters
----------
ts : ndarray
an array of time series
ax : int, optional (default to -1)
the axis of time_series along which to compute means and stdevs
Returns
-------
ndarray
the renormalized time series array (in units of %)
Examples
--------
>>> ts = np.arange(4*5).reshape(4,5)
>>> ax = 0
>>> percent_change(ts,ax)
array([[-100. , -88.2353, -78.9474, -71.4286, -65.2174],
[ -33.3333, -29.4118, -26.3158, -23.8095, -21.7391],
[ 33.3333, 29.4118, 26.3158, 23.8095, 21.7391],
[ 100. , 88.2353, 78.9474, 71.4286, 65.2174]])
>>> ax = 1
>>> percent_change(ts,ax)
array([[-100. , -50. , 0. , 50. , 100. ],
[ -28.5714, -14.2857, 0. , 14.2857, 28.5714],
[ -16.6667, -8.3333, 0. , 8.3333, 16.6667],
[ -11.7647, -5.8824, 0. , 5.8824, 11.7647]])
"""
ts = np.asarray(ts)
return (ts / np.expand_dims(np.mean(ts, ax), ax) - 1) * 100
#----------Event-related analysis utils ----------------------------------
def fir_design_matrix(events, len_hrf):
"""Create a FIR event matrix from a time-series of events.
Parameters
----------
events : 1-d int array
Integers denoting different kinds of events, occuring at the time
corresponding to the bin represented by each slot in the array. In
time-bins in which no event occured, a 0 should be entered. If negative
event values are entered, they will be used as "negative" events, as in
events that should be contrasted with the postitive events (typically -1
and 1 can be used for a simple contrast of two conditions)
len_hrf : int
The expected length of the HRF (in the same time-units as the events are
represented (presumably TR). The size of the block dedicated in the
fir_matrix to each type of event
Returns
-------
fir_matrix : matrix
The design matrix for FIR estimation
"""
event_types = np.unique(events)[np.unique(events) != 0]
fir_matrix = np.zeros((events.shape[0], len_hrf * event_types.shape[0]))
for t in event_types:
idx_h_a = np.where(event_types == t)[0] * len_hrf
idx_h_b = idx_h_a + len_hrf
idx_v = np.where(events == t)[0]
for idx_v_a in idx_v:
idx_v_b = idx_v_a + len_hrf
fir_matrix[idx_v_a:idx_v_b, idx_h_a:idx_h_b] += (np.eye(len_hrf) *
np.sign(t))
return fir_matrix
#We carry around a copy of the hilbert transform analytic signal from newer
#versions of scipy, in case someone is using an older version of scipy with a
#borked hilbert:
def hilbert_from_new_scipy(x, N=None, axis=-1):
"""This is a verbatim copy of scipy.signal.hilbert from scipy version
0.8dev, which we carry around in order to use in case the version of scipy
installed is old enough to have a broken implementation of hilbert """
x = np.asarray(x)
if N is None:
N = x.shape[axis]
if N <= 0:
raise ValueError("N must be positive.")
if np.iscomplexobj(x):
print("Warning: imaginary part of x ignored.")
x = np.real(x)
Xf = fftpack.fft(x, N, axis=axis)
h = np.zeros(N)
if N % 2 == 0:
h[0] = h[N / 2] = 1
h[1:N / 2] = 2
else:
h[0] = 1
h[1:(N + 1) / 2] = 2
if len(x.shape) > 1:
ind = [np.newaxis] * x.ndim
ind[axis] = slice(None)
h = h[ind]
x = fftpack.ifft(Xf * h, axis=axis)
return x
#---------- MAR utilities ----------------------------------------
# These utilities are used in the computation of multivariate autoregressive
# models (used in computing Granger causality):
def crosscov_vector(x, y, nlags=None):
"""
This method computes the following function
.. math::
R_{xy}(k) = E{ x(t)y^{*}(t-k) } = E{ x(t+k)y^{*}(t) }
k \in {0, 1, ..., nlags-1}
(* := conjugate transpose)
Note: This is related to the other commonly used definition
for vector crosscovariance
.. math::
R_{xy}^{(2)}(k) = E{ x(t-k)y^{*}(t) } = R_{xy}^(-k) = R_{yx}^{*}(k)
Parameters
----------
x, y : ndarray (nc, N)
nlags : int, optional
compute lags for k in {0, ..., nlags-1}
Returns
-------
rxy : ndarray (nc, nc, nlags)
"""
N = x.shape[1]
if nlags is None:
nlags = N
nc = x.shape[0]
rxy = np.empty((nc, nc, nlags))
# rxy(k) = E{ x(t)y*(t-k) } ( * = conj transpose )
# Take the expectation over an outer-product
# between x(t) and conj{y(t-k)} for each t
for k in range(nlags):
# rxy(k) = E{ x(t)y*(t-k) }
prod = x[:, None, k:] * y[None, :, :N - k].conj()
## # rxy(k) = E{ x(t)y*(t+k) }
## prod = x[:,None,:N-k] * y[None,:,k:].conj()
# Do a sample mean of N-k pts? or sum and divide by N?
rxy[..., k] = prod.mean(axis=-1)
return rxy
def autocov_vector(x, nlags=None):
"""
This method computes the following function
.. math::
R_{xx}(k) = E{ x(t)x^{*}(t-k) } = E{ x(t+k)x^{*}(t) }
k \in {0, 1, ..., nlags-1}
(* := conjugate transpose)
Note: this is related to
the other commonly used definition for vector autocovariance
.. math::
R_{xx}^{(2)}(k) = E{ x(t-k)x^{*}(t) } = R_{xx}(-k) = R_{xx}^{*}(k)
Parameters
----------
x : ndarray (nc, N)
nlags : int, optional
compute lags for k in {0, ..., nlags-1}
Returns
-------
rxx : ndarray (nc, nc, nlags)
"""
return crosscov_vector(x, x, nlags=nlags)
def generate_mar(a, cov, N):
"""
Generates a multivariate autoregressive dataset given the formula:
X(t) + sum_{i=1}^{P} a(i)X(t-i) = E(t)
Where E(t) is a vector of samples from possibly covarying noise processes.
Parameters
----------
a : ndarray (n_order, n_c, n_c)
An order n_order set of coefficient matrices, each shaped (n_c, n_c) for
n_channel data
cov : ndarray (n_c, n_c)
The innovations process covariance
N : int
how many samples to generate
Returns
-------
mar, nz
mar and noise process shaped (n_c, N)
"""
n_c = cov.shape[0]
n_order = a.shape[0]
nz = np.random.multivariate_normal(
np.zeros(n_c), cov, size=(N,)
)
# nz is a (N x n_seq) array
mar = nz.copy() # np.zeros((N, n_seq), 'd')
# this looks like a redundant loop that can be rolled into a matrix-matrix
# multiplication at each coef matrix a(i)
# this rearranges the equation to read:
# X(i) = E(i) - sum_{j=1}^{P} a(j)X(i-j)
# where X(n) n < 0 is taken to be 0
# In terms of the code: X is mar and E is nz, P is n_order
for i in range(N):
for j in range(min(i, n_order)): # j logically in set {1, 2, ..., P}
mar[i, :] -= np.dot(a[j], mar[i - j - 1, :])
return mar.transpose(), nz.transpose()
#----------goodness of fit utilities ----------------------------------------
def akaike_information_criterion(ecov, p, m, Ntotal, corrected=False):
"""
A measure of the goodness of fit of an auto-regressive model based on the
model order and the error covariance.
Parameters
----------
ecov : float array
The error covariance of the system
p
the number of channels
m : int
the model order
Ntotal
the number of total time-points (across channels)
corrected : boolean (optional)
Whether to correct for small sample size
Returns
-------
AIC : float
The value of the AIC
Notes
-----
This is an implementation of equation (50) in Ding et al. (2006):
M Ding and Y Chen and S Bressler (2006) Granger Causality: Basic Theory and
Application to Neuroscience. http://arxiv.org/abs/q-bio/0608035v1
Correction for small sample size is taken from:
http://en.wikipedia.org/wiki/Akaike_information_criterion.
"""
AIC = (2 * (np.log(linalg.det(ecov))) +
((2 * (p ** 2) * m) / (Ntotal)))
if corrected is None:
return AIC
else:
return AIC + (2 * m * (m + 1)) / (Ntotal - m - 1)
def bayesian_information_criterion(ecov, p, m, Ntotal):
"""The Bayesian Information Criterion, also known as the Schwarz criterion
is a measure of goodness of fit of a statistical model, based on the
number of model parameters and the likelihood of the model
Parameters
----------
ecov : float array
The error covariance of the system
p : int
the system size (how many variables).
m : int
the model order.
corrected : boolean (optional)
Whether to correct for small sample size
Returns
-------
BIC : float
The value of the BIC
a
the resulting autocovariance vector
Notes
-----
This is an implementation of equation (51) in Ding et al. (2006):
.. math ::
BIC(m) = 2 log(|\Sigma|) + \frac{2p^2 m log(N_{total})}{N_{total}},
where $\Sigma$ is the noise covariance matrix. In auto-regressive model
estimation, this matrix will contain in $\Sigma_{i,j}$ the residual
variance in estimating time-series $i$ from $j$, $p$ is the dimensionality
of the data, $m$ is the number of parameters in the model and $N_{total}$
is the number of time-points.
M Ding and Y Chen and S Bressler (2006) Granger Causality: Basic Theory and
Application to Neuroscience. http://arxiv.org/abs/q-bio/0608035v1
See http://en.wikipedia.org/wiki/Schwarz_criterion
"""
BIC = (2 * (np.log(linalg.det(ecov))) +
((2 * (p ** 2) * m * np.log(Ntotal)) / (Ntotal)))
return BIC
|