/usr/share/pyshared/nitime/viz.py is in python-nitime 0.5-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 | """Tools for visualization of time-series data.
Depends on matplotlib. Some functions depend also on networkx
"""
from __future__ import print_function
# If you are running nosetests right now, you might want to use 'agg' as a backend:
import sys
from nitime.six.moves import map
from nitime.six.moves import zip
if "nose" in sys.modules:
import matplotlib
matplotlib.use('agg')
# Then do all the rest of it:
import numpy as np
from scipy import fftpack
from matplotlib import mpl
from matplotlib import pyplot as plt
import matplotlib.ticker as ticker
import matplotlib.colors as colors
from mpl_toolkits.axes_grid import make_axes_locatable
from nitime import timeseries as ts
import nitime.utils as tsu
from nitime.utils import threshold_arr, minmax_norm, rescale_arr
import nitime.analysis as nta
# Matplotlib 1.3 has a bug in it, so if that's what you have, we'll replace it
# for you with a fixed version of that module:
import matplotlib
if matplotlib.__version__[:3] == '1.3' or matplotlib.__version__[:3] == '1.4':
import nitime._mpl_units as mpl_units
import matplotlib.axis as ax
ax.munits = mpl_units
from nitime.utils import triu_indices
#Some visualization functions require networkx. Import that if possible:
try:
import networkx as nx
#If not, throw an error and get on with business:
except ImportError:
e_s = "Networkx is not available. Some visualization tools might not work"
e_s += "\n To download networkx: http://networkx.lanl.gov/"
print(e_s)
class NetworkxNotInstalled(object):
def __getattribute__(self, x):
raise ImportError(e_s)
nx = NetworkxNotInstalled()
def plot_tseries(time_series, fig=None, axis=0,
xticks=None, xunits=None, yticks=None, yunits=None,
xlabel=None, ylabel=None, yerror=None, error_alpha=0.1,
time_unit=None, **kwargs):
"""plot a timeseries object
Arguments
---------
time_series: a nitime time-series object
fig: a figure handle, opens a new figure if None
subplot: an axis number (if there are several in the figure to be opened),
defaults to 0.
xticks: optional, list, specificies what values to put xticks on. Defaults
to the matlplotlib-generated.
yticks: optional, list, specificies what values to put xticks on. Defaults
to the matlplotlib-generated.
xlabel: optional, list, specificies what labels to put on xticks
ylabel: optional, list, specificies what labels to put on yticks
yerror: optional, UniformTimeSeries with the same sampling_rate and number
of samples and channels as time_series, the error will be displayed as a
shading above and below the plotted time-series
"""
if fig is None:
fig = plt.figure()
if not fig.get_axes():
ax = fig.add_subplot(1, 1, 1)
else:
ax = fig.get_axes()[axis]
#Make sure that time displays on the x axis with the units you want:
#If you want to change the time-unit on the visualization from that used to
#represent the time-series:
if time_unit is not None:
tu = time_unit
conv_fac = ts.time_unit_conversion[time_unit]
#Otherwise, get the information from your input:
else:
tu = time_series.time_unit
conv_fac = time_series.time._conversion_factor
this_time = time_series.time / float(conv_fac)
ax.plot(this_time, time_series.data.T, **kwargs)
if xlabel is None:
ax.set_xlabel('Time (%s)' % tu)
else:
ax.set_xlabel(xlabel)
if ylabel is not None:
ax.set_ylabel(ylabel)
if yerror is not None:
if len(yerror.data.shape) == 1:
this_e = yerror.data[np.newaxis, :]
else:
this_e = yerror.data
delta = this_e
e_u = time_series.data + delta
e_d = time_series.data - delta
for i in range(e_u.shape[0]):
ax.fill_between(this_time, e_d[i], e_u[i], alpha=error_alpha)
return fig
def matshow_tseries(time_series, fig=None, axis=0, xtick_n=5, time_unit=None,
xlabel=None, ylabel=None):
"""Creates an image of the time-series, ordered according to the first
dimension of the time-series object
Parameters
----------
time_series: a nitime time-series object
fig: a figure handle, opens a new figure if None
axis: an axis number (if there are several in the figure to be opened),
defaults to 0.
xtick_n: int, optional, sets the number of ticks to be placed on the x axis
"""
if fig is None:
fig = plt.figure()
if not fig.get_axes():
ax = fig.add_subplot(1, 1, 1)
else:
ax = fig.get_axes()[axis]
#Make sure that time displays on the x axis with the units you want:
#If you want to change the time-unit on the visualization from that used to
#represent the time-series:
if time_unit is not None:
tu = time_unit
conv_fac = ts.time_unit_conversion[time_unit]
#Otherwise, get the information from your input:
else:
tu = time_series.time_unit
conv_fac = time_series.time._conversion_factor
this_time = time_series.time / float(conv_fac)
ax.matshow(time_series.data)
ax.set_xticks(list(range(len(this_time)))[::len(this_time) / xtick_n])
ax.set_xticklabels(this_time[::len(this_time) / xtick_n])
if xlabel is None:
ax.set_xlabel('Time (%s)' % tu)
else:
ax.set_xlabel(xlabel)
if ylabel is not None:
ax.set_ylabel(ylabel)
return fig
## Helper functions for matshow_roi and for drawgraph_roi, in order to get the
## right cmap for the colorbar:
##Currently not used at all - should they be removed?
def rgb_to_dict(value, cmap):
return dict(zip(('red', 'green', 'blue', 'alpha'), cmap(value)))
def subcolormap(xmin, xmax, cmap):
'''Returns the part of cmap between xmin, xmax, scaled to 0,1.'''
assert xmin < xmax
assert xmax <= 1
cd = cmap._segmentdata.copy()
colornames = ('red', 'green', 'blue')
rgbmin, rgbmax = rgb_to_dict(xmin, cmap), rgb_to_dict(xmax, cmap)
for k in cd:
tmp = [x for x in cd[k] if x[0] >= xmin and x[0] <= xmax]
if tmp == [] or tmp[0][0] > xmin:
tmp = [(xmin, rgbmin[k], rgbmin[k])] + tmp
if tmp == [] or tmp[-1][0] < xmax:
tmp = tmp + [(xmax, rgbmax[k], rgbmax[k])]
#now scale all this to (0,1)
square = list(zip(*tmp))
xbreaks = [(x - xmin) / (xmax - xmin) for x in square[0]]
square[0] = xbreaks
tmp = list(zip(*square))
cd[k] = tmp
return colors.LinearSegmentedColormap('local', cd, N=256)
def drawmatrix_channels(in_m, channel_names=None, fig=None, x_tick_rot=0,
size=None, cmap=plt.cm.RdBu_r, colorbar=True,
color_anchor=None, title=None):
r"""Creates a lower-triangle of the matrix of an nxn set of values. This is
the typical format to show a symmetrical bivariate quantity (such as
correlation or coherence between two different ROIs).
Parameters
----------
in_m: nxn array with values of relationships between two sets of rois or
channels
channel_names (optional): list of strings with the labels to be applied to
the channels in the input. Defaults to '0','1','2', etc.
fig (optional): a matplotlib figure
cmap (optional): a matplotlib colormap to be used for displaying the values
of the connections on the graph
title (optional): string to title the figure (can be like '$\alpha$')
color_anchor (optional): determine the mapping from values to colormap
if None, min and max of colormap correspond to min and max of in_m
if 0, min and max of colormap correspond to max of abs(in_m)
if (a,b), min and max of colormap correspond to (a,b)
Returns
-------
fig: a figure object
"""
N = in_m.shape[0]
ind = np.arange(N) # the evenly spaced plot indices
def channel_formatter(x, pos=None):
thisind = np.clip(int(x), 0, N - 1)
return channel_names[thisind]
if fig is None:
fig = plt.figure()
if size is not None:
fig.set_figwidth(size[0])
fig.set_figheight(size[1])
w = fig.get_figwidth()
h = fig.get_figheight()
ax_im = fig.add_subplot(1, 1, 1)
#If you want to draw the colorbar:
if colorbar:
divider = make_axes_locatable(ax_im)
ax_cb = divider.new_vertical(size="10%", pad=0.1, pack_start=True)
fig.add_axes(ax_cb)
#Make a copy of the input, so that you don't make changes to the original
#data provided
m = in_m.copy()
#Null the upper triangle, so that you don't get the redundant and the
#diagonal values:
idx_null = triu_indices(m.shape[0])
m[idx_null] = np.nan
#Extract the minimum and maximum values for scaling of the
#colormap/colorbar:
max_val = np.nanmax(m)
min_val = np.nanmin(m)
if color_anchor is None:
color_min = min_val
color_max = max_val
elif color_anchor == 0:
bound = max(abs(max_val), abs(min_val))
color_min = -bound
color_max = bound
else:
color_min = color_anchor[0]
color_max = color_anchor[1]
#The call to imshow produces the matrix plot:
im = ax_im.imshow(m, origin='upper', interpolation='nearest',
vmin=color_min, vmax=color_max, cmap=cmap)
#Formatting:
ax = ax_im
ax.grid(True)
#Label each of the cells with the row and the column:
if channel_names is not None:
for i in range(0, m.shape[0]):
if i < (m.shape[0] - 1):
ax.text(i - 0.3, i, channel_names[i], rotation=x_tick_rot)
if i > 0:
ax.text(-1, i + 0.3, channel_names[i],
horizontalalignment='right')
ax.set_axis_off()
ax.set_xticks(np.arange(N))
ax.xaxis.set_major_formatter(ticker.FuncFormatter(channel_formatter))
fig.autofmt_xdate(rotation=x_tick_rot)
ax.set_yticks(np.arange(N))
ax.set_yticklabels(channel_names)
ax.set_ybound([-0.5, N - 0.5])
ax.set_xbound([-0.5, N - 1.5])
#Make the tick-marks invisible:
for line in ax.xaxis.get_ticklines():
line.set_markeredgewidth(0)
for line in ax.yaxis.get_ticklines():
line.set_markeredgewidth(0)
ax.set_axis_off()
if title is not None:
ax.set_title(title)
#The following produces the colorbar and sets the ticks
if colorbar:
#Set the ticks - if 0 is in the interval of values, set that, as well
#as the maximal and minimal values:
if min_val < 0:
ticks = [color_min, min_val, 0, max_val, color_max]
#Otherwise - only set the minimal and maximal value:
else:
ticks = [color_min, min_val, max_val, color_max]
#This makes the colorbar:
cb = fig.colorbar(im, cax=ax_cb, orientation='horizontal',
cmap=cmap,
norm=im.norm,
boundaries=np.linspace(color_min, color_max, 256),
ticks=ticks,
format='%.2f')
# Set the current figure active axis to be the top-one, which is the one
# most likely to be operated on by users later on
fig.sca(ax)
return fig
def drawgraph_channels(in_m, channel_names=None, cmap=plt.cm.RdBu_r,
node_shapes=None, node_colors=None,
title=None, layout=None, threshold=None):
"""Draw a graph based on the matrix specified in in_m. Wrapper to
draw_graph.
Parameters
----------
in_m: nxn array with values of relationships between two sets of channels
or channels
channel_names (optional): list of strings with the labels to be applied to
the channels in the input. Defaults to '0','1','2', etc.
cmap (optional): a matplotlib colormap to be used for displaying the values
of the connections on the graph
node_shapes: defaults to circle
node_colors: defaults to white,
title:
layout, defaults to nx.circular_layout
Returns
-------
fig: a figure object
Notes
-----
The layout of the graph is done using functions from networkx
(http://networkx.lanl.gov), which is a dependency of this function
"""
nnodes = in_m.shape[0]
if channel_names is None:
node_labels = None # [None]*nnodes
else:
node_labels = list(channel_names)
if node_shapes is None:
node_shapes = ['o'] * nnodes
if node_colors is None:
node_colors = ['w'] * nnodes
#Make a copy, avoiding making changes to the original data:
m = in_m.copy()
#Set the diagonal values to the minimal value of the matrix, so that the
#vrange doesn't always get stretched to 1:
m[np.arange(nnodes), np.arange(nnodes)] = min(np.nanmin(m), -np.nanmax(m))
range_setter = max(abs(np.nanmin(m)), abs(np.nanmax(m)))
vrange = [-range_setter, range_setter]
#m[np.where(np.isnan(m))] = 0
if threshold is None:
#If there happens to be an off-diagnoal edge in the adjacency matrix
#which is just as small as the minimum, we don't want to drop that one:
eps = 10 ** -10
G = mkgraph(m, threshold=vrange[0] - eps, threshold2=None)
else:
G = mkgraph(m, threshold=threshold[0], threshold2=threshold[1])
fig = draw_graph(G,
node_colors=node_colors,
node_shapes=node_shapes,
node_scale=2,
labels=node_labels,
edge_cmap=cmap,
colorbar=True,
vrange=vrange,
title=title,
stretch_factor=1,
edge_alpha=False,
layout=layout
)
return fig
def plot_xcorr(xc, ij, fig=None, line_labels=None, xticks=None, yticks=None,
xlabel=None, ylabel=None):
""" Visualize the cross-correlation function"""
if fig is None:
fig = plt.figure()
if not fig.get_axes():
ax = fig.add_subplot(1, 1, 1)
else:
ax = fig.get_axes()[0]
if line_labels is not None:
#Reverse the order, so that pop() works:
line_labels.reverse()
this_labels = line_labels
#Use the ij input as the labels:
else:
this_labels = [str(this) for this in ij].reverse()
#Make sure that time displays on the x axis with the units you want:
conv_fac = xc.time._conversion_factor
this_time = xc.time / float(conv_fac)
for (i, j) in ij:
if this_labels is not None:
#Use pop() to get the first one and remove it:
ax.plot(this_time, xc.data[i, j].squeeze(),
label=this_labels.pop())
else:
ax.plot(this_time, xc.data[i, j].squeeze())
ax.set_xlabel('Time(sec)')
ax.set_ylabel('Correlation(normalized)')
if xlabel is None:
#Make sure that time displays on the x axis with the units you want:
conv_fac = xc.time._conversion_factor
time_label = xc.time / float(conv_fac)
ax.set_xlabel('Time (%s)' % xc.time_unit)
else:
time_label = xlabel
ax.set_xlabel(xlabel)
if line_labels is not None:
plt.legend()
if ylabel is None:
ax.set_ylabel('Correlation')
else:
ax.set_ylabel(ylabel)
return fig
#-----------------------------------------------------------------------------
# Functions from brainx:
#-----------------------------------------------------------------------------
def draw_matrix(mat, th1=None, th2=None, clim=None, cmap=None):
"""Draw a matrix, optionally thresholding it.
"""
if th1 is not None:
m2 = tsu.thresholded_arr(mat, th1, th2)
else:
m2 = mat
ax = plt.matshow(m2, cmap=cmap)
if clim is not None:
ax.set_clim(*clim)
plt.colorbar()
return ax
def draw_arrows(G, pos, edgelist=None, ax=None, edge_color='k', alpha=1.0,
width=1):
"""Draw arrows on a set of edges"""
if ax is None:
ax = plt.gca()
if edgelist is None:
edgelist = G.edges()
if not edgelist or len(edgelist) == 0: # no edges!
return
# set edge positions
edge_pos = np.asarray([(pos[e[0]], pos[e[1]]) for e in edgelist])
arrow_colors = (colors.colorConverter.to_rgba('k', alpha), )
a_pos = []
# Radius of the nodes in world coordinates
radius = 0.5
head_length = 0.31
overhang = 0.1
#ipvars('edge_pos') # dbg
for src, dst in edge_pos:
dd = dst - src
nd = np.linalg.norm(dd)
if nd == 0: # source and target at same position
continue
s = 1.0 - radius / nd
dd *= s
x1, y1 = src
dx, dy = dd
ax.arrow(x1, y1,
dx, dy,
lw=width, width=width,
head_length=head_length,
fc=edge_color, ec='none',
alpha=alpha, overhang=overhang)
def draw_graph(G,
labels=None,
node_colors=None,
node_shapes=None,
node_scale=1.0,
edge_style='solid',
edge_cmap=None,
colorbar=False,
vrange=None,
layout=None,
title=None,
font_family='sans-serif',
font_size=9,
stretch_factor=1.0,
edge_alpha=True,
fig_size=None):
"""Draw a weighted graph with options to visualize link weights.
The resulting diagram uses the rank of each node as its size, and the
weight of each link (after discarding thresholded values, see below) as the
link opacity.
It maps edge weight to color as well as line opacity and thickness,
allowing the color part to be hardcoded over a value range (to permit valid
cross-figure comparisons for different graphs, so the same color
corresponds to the same link weight even if each graph has a different
range of weights). The nodes sizes are proportional to their degree,
computed as the sum of the weights of all their links. The layout defaults
to circular, but any nx layout function can be passed in, as well as a
statically precomputed layout.
Parameters
----------
G : weighted graph
The values must be of the form (v1,v2), with all v2 in [0,1]. v1 are
used for colors, v2 for thickness/opacity.
labels : list or dict, optional.
An indexable object that maps nodes to strings. If not given, the
string form of each node is used as a label. If False, no labels are
drawn.
node_colors : list or dict, optional.
An indexable object that maps nodes to valid matplotlib color specs. See
matplotlib's plot() function for details.
node_shapes : list or dict, optional.
An indexable object that maps nodes to valid matplotlib shape specs. See
matplotlib's scatter() function for details. If not given, circles are
used.
node_scale : float, optional
A scale factor to globally stretch or shrink all nodes symbols by.
edge_style : string, optional
Line style for the edges, defaults to 'solid'.
edge_cmap : matplotlib colormap, optional.
A callable that returns valid color specs, like matplotlib colormaps.
If not given, edges are colored black.
colorbar : bool
If true, automatically add a colorbar showing the mapping of graph weight
values to colors.
vrange : pair of floats
If given, this indicates the total range of values that the weights can
in principle occupy, and is used to set the lower/upper range of the
colormap. This allows you to set the range of multiple different figures
to the same values, even if each individual graph has range variations,
so that visual color comparisons across figures are valid.
layout : function or layout dict, optional
A NetworkX-like layout function or the result of a precomputed layout for
the given graph. NetworkX produces layouts as dicts keyed by nodes and
with (x,y) pairs of coordinates as values, any function that produces
this kind of output is acceptable. Defaults to nx.circular_layout.
title : string, optional.
If given, title to put on the main plot.
font_family : string, optional.
Font family used for the node labels and title.
font_size : int, optional.
Font size used for the node labels and title.
stretch_factor : float, optional
A global scaling factor to make the graph larger (or smaller if <1).
This can be used to separate the nodes if they start overlapping.
edge_alpha: bool, optional
Whether to weight the transparency of each edge by a factor equivalent to
its relative weight
fig_size: list of height by width, the size of the figure (in
inches). Defaults to [6,6]
Returns
-------
fig
The matplotlib figure object with the plot.
"""
if fig_size is None:
figsize = [6, 6]
scaler = figsize[0] / 6.
# For the size of the node symbols
node_size_base = 1000 * scaler
node_min_size = 200 * scaler
default_node_shape = 'o'
# Default colors if none given
default_node_color = 'r'
default_edge_color = 'k'
# Max edge width
max_width = 13 * scaler
min_width = 2 * scaler
font_family = 'sans-serif'
# We'll use the nodes a lot, let's make a numpy array of them
nodes = np.array(sorted(G.nodes()))
nnod = len(nodes)
# Build a 'weighted degree' array obtained by adding the (absolute value)
# of the weights for all edges pointing to each node:
amat = nx.adj_matrix(G).A # get a normal array out of it
degarr = abs(amat).sum(0) # weights are sums across rows
# Map the degree to the 0-1 range so we can use it for sizing the nodes.
try:
odegree = rescale_arr(degarr, 0, 1)
# Make an array of node sizes based on node degree
node_sizes = odegree * node_size_base + node_min_size
except ZeroDivisionError:
# All nodes same size
node_sizes = np.empty(nnod, float)
node_sizes.fill(0.5 * node_size_base + node_min_size)
# Adjust node size list. We square the scale factor because in mpl, node
# sizes represent area, not linear size, but it's more intuitive for the
# user to think of linear factors (the overall figure scale factor is also
# linear).
node_sizes *= node_scale ** 2
# Set default node properties
if node_colors is None:
node_colors = [default_node_color] * nnod
if node_shapes is None:
node_shapes = [default_node_shape] * nnod
# Set default edge colormap
if edge_cmap is None:
# Make an object with the colormap API, that maps all input values to
# the default color (with proper alhpa)
edge_cmap = (lambda val, alpha:
colors.colorConverter.to_rgba(default_edge_color, alpha))
# if vrange is None, we set the color range from the values, else the user
# can specify it
# e[2] is edge value: edges_iter returns (i,j,data)
gvals = np.array([e[2]['weight'] for e in G.edges(data=True)])
gvmin, gvmax = gvals.min(), gvals.max()
gvrange = gvmax - gvmin
if vrange is None:
vrange = gvmin, gvmax
# Now, construct the normalization for the colormap
cnorm = mpl.colors.Normalize(vmin=vrange[0], vmax=vrange[1])
# Create the actual plot where the graph will be displayed
figsize = np.array(figsize, float)
figsize *= stretch_factor
fig = plt.figure(figsize=figsize)
ax_graph = fig.add_subplot(1, 1, 1)
fig.sca(ax_graph)
if layout is None:
layout = nx.circular_layout
# Compute positions for all nodes - nx has several algorithms
if callable(layout):
pos = layout(G)
else:
# The user can also provide a precomputed layout
pos = layout
# Draw nodes
for nod in nodes:
nx.draw_networkx_nodes(G,
pos,
nodelist=[nod],
node_color=node_colors[nod],
node_shape=node_shapes[nod],
node_size=node_sizes[nod])
# Draw edges
if not isinstance(G, nx.DiGraph):
# Undirected graph, simple lines for edges
# We need the size of the value range to properly scale colors
vsize = vrange[1] - vrange[0]
gvals_normalized = G.metadata['vals_norm']
for (u, v, y) in G.edges(data=True):
# The graph value is the weight, and the normalized values are in
# [0,1], used for thickness/transparency
alpha = gvals_normalized[u, v]
# Scale the color choice to the specified vrange, so that
ecol = (y['weight'] - vrange[0]) / vsize
#print 'u,v:',u,v,'y:',y,'ecol:',ecol # dbg
if edge_alpha:
fade = alpha
else:
fade = 1.0
edge_color = [tuple(edge_cmap(ecol, fade))]
#dbg:
#print u,v,y
draw_networkx_edges(G,
pos,
edgelist=[(u, v)],
width=min_width + alpha * max_width,
edge_color=edge_color,
style=edge_style)
else:
# Directed graph, use arrows.
# XXX - this is currently broken.
raise NotImplementedError("arrow drawing currently broken")
## for (u,v,x) in G.edges(data=True):
## y,w = x
## draw_arrows(G,pos,edgelist=[(u,v)],
## edge_color=[w],
## alpha=w,
## edge_cmap=edge_cmap,
## width=w*max_width)
# Draw labels. If not given, we use the string form of the nodes. If
# labels is False, no labels are drawn.
if labels is None:
labels = map(str, nodes)
if labels:
lab_idx = list(range(len(labels)))
labels_dict = dict(zip(lab_idx, labels))
nx.draw_networkx_labels(G,
pos,
labels_dict,
font_size=font_size,
font_family=font_family)
if title:
plt.title(title, fontsize=font_size)
# Turn off x and y axes labels in pylab
plt.xticks([])
plt.yticks([])
# Add a colorbar if requested
if colorbar:
divider = make_axes_locatable(ax_graph)
ax_cb = divider.new_vertical(size="20%", pad=0.2, pack_start=True)
fig.add_axes(ax_cb)
cb = mpl.colorbar.ColorbarBase(ax_cb,
cmap=edge_cmap,
norm=cnorm,
#boundaries = np.linspace(min((gvmin,0)),
# max((gvmax,0)),
# 256),
orientation='horizontal',
format='%.2f')
# Always return the MPL figure object so the user can further manipulate it
return fig
def lab2node(labels, labels_dict):
return [labels_dict[ll] for ll in labels]
### Patched version for networx draw_networkx_edges, sent to Aric.
def draw_networkx_edges(G, pos,
edgelist=None,
width=1.0,
edge_color='k',
style='solid',
alpha=None,
edge_cmap=None,
edge_vmin=None,
edge_vmax=None,
ax=None,
arrows=True,
**kwds):
"""Draw the edges of the graph G
This draws only the edges of the graph G.
pos is a dictionary keyed by vertex with a two-tuple
of x-y positions as the value.
See networkx.layout for functions that compute node positions.
edgelist is an optional list of the edges in G to be drawn.
If provided, only the edges in edgelist will be drawn.
edgecolor can be a list of matplotlib color letters such as 'k' or
'b' that lists the color of each edge; the list must be ordered in
the same way as the edge list. Alternatively, this list can contain
numbers and those number are mapped to a color scale using the color
map edge_cmap. Finally, it can also be a list of (r,g,b) or (r,g,b,a)
tuples, in which case these will be used directly to color the edges. If
the latter mode is used, you should not provide a value for alpha, as it
would be applied globally to all lines.
For directed graphs, 'arrows' (actually just thicker stubs) are drawn
at the head end. Arrows can be turned off with keyword arrows=False.
See draw_networkx for the list of other optional parameters.
"""
try:
import matplotlib.pylab as pylab
import matplotlib.cbook as cb
from matplotlib.colors import colorConverter, Colormap
from matplotlib.collections import LineCollection
except ImportError:
raise ImportError("Matplotlib required for draw()")
except RuntimeError:
pass # unable to open display
if ax is None:
ax = pylab.gca()
if edgelist is None:
edgelist = G.edges()
if not edgelist or len(edgelist) == 0: # no edges!
return None
# set edge positions
edge_pos = np.asarray([(pos[e[0]], pos[e[1]]) for e in edgelist])
if not cb.iterable(width):
lw = (width,)
else:
lw = width
if not cb.is_string_like(edge_color) \
and cb.iterable(edge_color) \
and len(edge_color) == len(edge_pos):
if np.alltrue([cb.is_string_like(c)
for c in edge_color]):
# (should check ALL elements)
# list of color letters such as ['k','r','k',...]
edge_colors = tuple([colorConverter.to_rgba(c, alpha)
for c in edge_color])
elif np.alltrue([not cb.is_string_like(c)
for c in edge_color]):
# If color specs are given as (rgb) or (rgba) tuples, we're OK
if np.alltrue([cb.iterable(c) and len(c) in (3, 4)
for c in edge_color]):
edge_colors = tuple(edge_color)
alpha = None
else:
# numbers (which are going to be mapped with a colormap)
edge_colors = None
else:
e_s = 'edge_color must consist of either color names or numbers'
raise ValueError(e_s)
else:
if len(edge_color) == 1:
edge_colors = (colorConverter.to_rgba(edge_color, alpha),)
else:
e_s = 'edge_color must be a single color or list of exactly'
e_s += 'm colors where m is the number or edges'
raise ValueError(e_s)
edge_collection = LineCollection(edge_pos,
colors=edge_colors,
linewidths=lw,
antialiaseds=(1,),
linestyle=style,
transOffset=ax.transData,
)
# Note: there was a bug in mpl regarding the handling of alpha values for
# each line in a LineCollection. It was fixed in matplotlib in r7184 and
# r7189 (June 6 2009). We should then not set the alpha value globally,
# since the user can instead provide per-edge alphas now. Only set it
# globally if provided as a scalar.
if cb.is_numlike(alpha):
edge_collection.set_alpha(alpha)
# need 0.87.7 or greater for edge colormaps
if edge_colors is None:
if edge_cmap is not None:
assert(isinstance(edge_cmap, Colormap))
edge_collection.set_array(np.asarray(edge_color))
edge_collection.set_cmap(edge_cmap)
if edge_vmin is not None or edge_vmax is not None:
edge_collection.set_clim(edge_vmin, edge_vmax)
else:
edge_collection.autoscale()
pylab.sci(edge_collection)
# else:
# sys.stderr.write(\
# """matplotlib version >= 0.87.7 required for colormapped edges.
# (version %s detected)."""%matplotlib.__version__)
# raise UserWarning(\
# """matplotlib version >= 0.87.7 required for colormapped edges.
# (version %s detected)."""%matplotlib.__version__)
arrow_collection = None
if G.is_directed() and arrows:
# a directed graph hack
# draw thick line segments at head end of edge
# waiting for someone else to implement arrows that will work
arrow_colors = (colorConverter.to_rgba('k', alpha),)
a_pos = []
p = 1.0 - 0.25 # make head segment 25 percent of edge length
for src, dst in edge_pos:
x1, y1 = src
x2, y2 = dst
dx = x2 - x1 # x offset
dy = y2 - y1 # y offset
d = np.sqrt(float(dx ** 2 + dy ** 2)) # length of edge
if d == 0: # source and target at same position
continue
if dx == 0: # vertical edge
xa = x2
ya = dy * p + y1
if dy == 0: # horizontal edge
ya = y2
xa = dx * p + x1
else:
theta = np.arctan2(dy, dx)
xa = p * d * np.cos(theta) + x1
ya = p * d * np.sin(theta) + y1
a_pos.append(((xa, ya), (x2, y2)))
arrow_collection = LineCollection(a_pos,
colors=arrow_colors,
linewidths=[4 * ww for ww in lw],
antialiaseds=(1,),
transOffset=ax.transData,
)
# update view
minx = np.amin(np.ravel(edge_pos[:, :, 0]))
maxx = np.amax(np.ravel(edge_pos[:, :, 0]))
miny = np.amin(np.ravel(edge_pos[:, :, 1]))
maxy = np.amax(np.ravel(edge_pos[:, :, 1]))
w = maxx - minx
h = maxy - miny
padx, pady = 0.05 * w, 0.05 * h
corners = (minx - padx, miny - pady), (maxx + padx, maxy + pady)
ax.update_datalim(corners)
ax.autoscale_view()
edge_collection.set_zorder(1) # edges go behind nodes
ax.add_collection(edge_collection)
if arrow_collection:
arrow_collection.set_zorder(1) # edges go behind nodes
ax.add_collection(arrow_collection)
return ax
def mkgraph(cmat, threshold=0.0, threshold2=None):
"""Make a weighted graph object out of an adjacency matrix.
The values in the original matrix cmat can be thresholded out. If only one
threshold is given, all values below that are omitted when creating edges.
If two thresholds are given, then values in the th2-th1 range are
ommitted. This allows for the easy creation of weighted graphs with
positive and negative values where a range of weights around 0 is omitted.
Parameters
----------
cmat : 2-d square array
Adjacency matrix.
threshold : float
First threshold.
threshold2 : float
Second threshold.
Returns
-------
G : a NetworkX weighted graph object, to which a dictionary called
G.metadata is appended. This dict contains the original adjacency matrix
cmat, the two thresholds, and the weights
"""
# Input sanity check
nrow, ncol = cmat.shape
if nrow != ncol:
raise ValueError("Adjacency matrix must be square")
row_idx, col_idx, vals = threshold_arr(cmat, threshold, threshold2)
# Also make the full thresholded array available in the metadata
cmat_th = np.empty_like(cmat)
if threshold2 is None:
cmat_th.fill(threshold)
else:
cmat_th.fill(-np.inf)
cmat_th[row_idx, col_idx] = vals
# Next, make a normalized copy of the values. For the 2-threshold case, we
# use 'folding' normalization
if threshold2 is None:
vals_norm = minmax_norm(vals)
else:
vals_norm = minmax_norm(vals, 'folding', [threshold, threshold2])
# Now make the actual graph
G = nx.Graph(weighted=True)
G.add_nodes_from(list(range(nrow)))
# To keep the weights of the graph to simple values, we store the
# normalize ones in a separate dict that we'll stuff into the graph
# metadata.
normed_values = {}
for i, j, val, nval in zip(row_idx, col_idx, vals, vals_norm):
if i == j:
# no self-loops
continue
G.add_edge(i, j, weight=val)
normed_values[i, j] = nval
# Write a metadata dict into the graph and save the threshold info there
G.metadata = dict(threshold1=threshold,
threshold2=threshold2,
cmat_raw=cmat,
cmat_th=cmat_th,
vals_norm=normed_values,
)
return G
def plot_snr(tseries, lb=0, ub=None, fig=None):
"""
Show the coherence, snr and information of an SNRAnalyzer
Parameters
----------
tseries: nitime TimeSeries object
Multi-trial data in response to one stimulus/protocol with the dims:
(n_channels,n_repetitions,time)
lb,ub: float
Lower and upper bounds on the frequency range over which to
calculate (default to [0,Nyquist]).
Returns
-------
A tuple containing:
fig: a matplotlib figure object
This figure displays:
1. Coherence
2. SNR
3. Information
"""
if fig is None:
fig = plt.figure()
ax_spectra = fig.add_subplot(1, 2, 1)
ax_snr_info = fig.add_subplot(1, 2, 2)
A = []
info = []
s_n_r = []
coh = []
noise_spectra = []
signal_spectra = []
#If you only have one channel, make sure that everything still works by
#adding an axis
if len(tseries.data.shape) < 3:
this = tseries.data[np.newaxis, :, :]
else:
this = tseries.data
for i in range(this.shape[0]):
A.append(nta.SNRAnalyzer(ts.TimeSeries(this[i],
sampling_rate=tseries.sampling_rate)))
info.append(A[-1].mt_information)
s_n_r.append(A[-1].mt_snr)
coh.append(A[-1].mt_coherence)
noise_spectra.append(A[-1].mt_noise_psd)
signal_spectra.append(A[-1].mt_signal_psd)
freqs = A[-1].mt_frequencies
lb_idx, ub_idx = tsu.get_bounds(freqs, lb, ub)
freqs = freqs[lb_idx:ub_idx]
coh_mean = np.mean(coh, 0)
snr_mean = np.mean(s_n_r, 0)
info_mean = np.mean(info, 0)
n_spec_mean = np.mean(noise_spectra, 0)
s_spec_mean = np.mean(signal_spectra, 0)
ax_spectra.plot(freqs, np.log(s_spec_mean[lb_idx:ub_idx]), label='Signal')
ax_spectra.plot(freqs, np.log(n_spec_mean[lb_idx:ub_idx]), label='Noise')
ax_spectra.set_xlabel('Frequency (Hz)')
ax_spectra.set_ylabel('Spectral power (dB)')
ax_snr_info.plot(freqs, snr_mean[lb_idx:ub_idx], label='SNR')
ax_snr_info.plot(np.nan, np.nan, 'r', label='Info')
ax_snr_info.set_ylabel('SNR')
ax_snr_info.set_xlabel('Frequency (Hz)')
ax_info = ax_snr_info.twinx()
ax_info.plot(freqs, np.cumsum(info_mean[lb_idx:ub_idx]), 'r')
ax_info.set_ylabel('Cumulative information rate (bits/sec)')
return fig
def plot_snr_diff(tseries1, tseries2, lb=0, ub=None, fig=None,
ts_names=['1', '2'],
bandwidth=None, adaptive=False, low_bias=True):
"""
Show distributions of differences between two time-series in the
amount of snr (freq band by freq band) and information. For example,
for comparing two stimulus conditions
Parameters
----------
tseries1, tseries2 : nitime TimeSeries objects
These are the time-series to compare, with each of them having the
dims: (n_channels, n_reps, time), where n_channels1 = n_channels2
lb,ub: float
Lower and upper bounds on the frequency range over which to
calculate the information rate (default to [0,Nyquist]).
fig: matplotlib figure object
If you want to do this on already existing figure. Otherwise, a new
figure object will be generated.
ts_names: list of str
Labels for the two inputs, to be used in plotting (defaults to
['1','2'])
bandwidth, adaptive, low_bias: See :func:`nta.SNRAnalyzer` for details
Returns
-------
A tuple containing:
fig: a matplotlib figure object
This figure displays:
1. The histogram of the information differences between the two
time-series
2. The frequency-dependent SNR for the two time-series
info1, info2: float arrays
The frequency-dependent information rates (in bits/sec)
s_n_r1, s_n_r2: float arrays
The frequncy-dependent signal-to-noise ratios
"""
if fig is None:
fig = plt.figure()
ax_scatter = fig.add_subplot(1, 2, 1)
ax_snr = fig.add_subplot(1, 2, 2)
SNR1 = []
s_n_r1 = []
info1 = []
SNR2 = []
info2 = []
s_n_r2 = []
#If you only have one channel, make sure that everything still works by
#adding an axis
if len(tseries1.data.shape) < 3:
this1 = tseries1.data[np.newaxis, :, :]
this2 = tseries2.data[np.newaxis, :, :]
else:
this1 = tseries1.data
this2 = tseries2.data
for i in range(this1.shape[0]):
SNR1.append(nta.SNRAnalyzer(ts.TimeSeries(this1[i],
sampling_rate=tseries1.sampling_rate),
bandwidth=bandwidth,
adaptive=adaptive,
low_bias=low_bias))
info1.append(SNR1[-1].mt_information)
s_n_r1.append(SNR1[-1].mt_snr)
SNR2.append(nta.SNRAnalyzer(ts.TimeSeries(this2[i],
sampling_rate=tseries2.sampling_rate),
bandwidth=bandwidth,
adaptive=adaptive,
low_bias=low_bias))
info2.append(SNR2[-1].mt_information)
s_n_r2.append(SNR2[-1].mt_snr)
freqs = SNR1[-1].mt_frequencies
lb_idx, ub_idx = tsu.get_bounds(freqs, lb, ub)
freqs = freqs[lb_idx:ub_idx]
info1 = np.array(info1)
info_sum1 = np.sum(info1[:, lb_idx:ub_idx], -1)
info2 = np.array(info2)
info_sum2 = np.sum(info2[:, lb_idx:ub_idx], -1)
ax_scatter.scatter(info_sum1, info_sum2)
ax_scatter.errorbar(np.mean(info_sum1), np.mean(info_sum2),
yerr=np.std(info_sum2),
xerr=np.std(info_sum1))
plot_min = min(min(info_sum1), min(info_sum2))
plot_max = max(max(info_sum1), max(info_sum2))
ax_scatter.plot([plot_min, plot_max], [plot_min, plot_max], 'k--')
ax_scatter.set_xlabel('Information %s (bits/sec)' % ts_names[0])
ax_scatter.set_ylabel('Information %s (bits/sec)' % ts_names[1])
snr_mean1 = np.mean(s_n_r1, 0)
snr_mean2 = np.mean(s_n_r2, 0)
ax_snr.plot(freqs, snr_mean1[lb_idx:ub_idx], label=ts_names[0])
ax_snr.plot(freqs, snr_mean2[lb_idx:ub_idx], label=ts_names[1])
ax_snr.legend()
ax_snr.set_xlabel('Frequency (Hz)')
ax_snr.set_ylabel('SNR')
return fig, info1, info2, s_n_r1, s_n_r2
def plot_corr_diff(tseries1, tseries2, fig=None,
ts_names=['1', '2']):
"""
Show the differences in *Fischer-transformed* snr correlations for two
time-series
Parameters
----------
tseries1, tseries2 : nitime TimeSeries objects
These are the time-series to compare, with each of them having the
dims: (n_channels, n_reps, time), where n_channels1 = n_channels2
lb,ub: float
Lower and upper bounds on the frequency range over which to
calculate the information rate (default to [0,Nyquist]).
fig: matplotlib figure object
If you want to do this on already existing figure. Otherwise, a new
figure object will be generated.
ts_names: list of str
Labels for the two inputs, to be used in plotting (defaults to
['1','2'])
bandwidth, adaptive, low_bias: See :func:`SNRAnalyzer` for details
Returns
-------
fig: a matplotlib figure object
"""
if fig is None:
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
SNR1 = []
SNR2 = []
corr1 = []
corr2 = []
corr_e1 = []
corr_e2 = []
for i in range(tseries1.shape[0]):
SNR1.append(nta.SNRAnalyzer(ts.TimeSeries(tseries1.data[i],
sampling_rate=tseries1.sampling_rate)))
corr1.append(np.arctanh(np.abs(SNR1[-1].correlation[0])))
corr_e1.append(SNR1[-1].correlation[1])
SNR2.append(nta.SNRAnalyzer(ts.TimeSeries(tseries2.data[i],
sampling_rate=tseries2.sampling_rate)))
corr2.append(np.arctanh(np.abs(SNR2[-1].correlation[0])))
corr_e2.append(SNR1[-1].correlation[1])
ax.scatter(np.array(corr1), np.array(corr2))
ax.errorbar(np.mean(corr1), np.mean(corr2),
yerr=np.std(corr2),
xerr=np.std(corr1))
plot_min = min(min(corr1), min(corr2))
plot_max = max(max(corr1), max(corr2))
ax.plot([plot_min, plot_max], [plot_min, plot_max], 'k--')
ax.set_xlabel('Correlation (Fischer Z) %s' % ts_names[0])
ax.set_ylabel('Correlation (Fischer Z) %s' % ts_names[1])
return fig, corr1, corr2
def winspect(win, f, name=None):
"""
Inspect a window by showing it and its spectrum
Utility file used in building the documentation
"""
npts = len(win)
ax1, ax2 = f.add_subplot(1, 2, 1), f.add_subplot(1, 2, 2)
ax1.plot(win)
ax1.set_xlabel('Time')
ax1.set_ylabel('Window amplitude')
ax1.set_ylim(-0.1, 1.1)
ax1.set_xlim(0, npts)
wf = fftpack.fft(win)
ax1.set_xticks(np.arange(npts / 8., npts, npts / 8.))
toplot = np.abs(fftpack.fftshift(wf).real)
toplot /= np.max(toplot)
toplot = np.log(toplot)
ax2.plot(toplot, label=name)
ax2.set_xlim(0, npts)
ax2.set_xticks(np.arange(npts / 8., npts, npts / 8.))
ax2.set_xticklabels(np.arange((-1 / 2. + 1 / 8.), 1 / 2., 1 / 8.))
ax2.set_xlabel('Relative frequency')
ax2.set_ylabel('Relative attenuation (log scale)')
ax2.grid()
ax2.legend(loc=4)
f.set_size_inches([10, 6])
def plot_spectral_estimate(f, sdf, sdf_ests, limits=None, elabels=()):
"""
Plot an estimate of a spectral transform against the ground truth.
Utility file used in building the documentation
"""
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax_limits = (sdf.min() - 2*np.abs(sdf.min()),
sdf.max() + 1.25*np.abs(sdf.max()))
ax.plot(f, sdf, 'c', label='True S(f)')
if not elabels:
elabels = ('',) * len(sdf_ests)
colors = 'bgkmy'
for e, l, c in zip(sdf_ests, elabels, colors):
ax.plot(f, e, color=c, linewidth=2, label=l)
if limits is not None:
ax.fill_between(f, limits[0], y2=limits[1], color=(1, 0, 0, .3),
alpha=0.5)
ax.set_ylim(ax_limits)
ax.legend()
return fig
|