This file is indexed.

/usr/lib/python2.7/dist-packages/patsy/build.py is in python-patsy 0.3.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
# This file is part of Patsy
# Copyright (C) 2011-2013 Nathaniel Smith <njs@pobox.com>
# See file LICENSE.txt for license information.

# This file defines the core design matrix building functions.

# These are made available in the patsy.* namespace
__all__ = ["design_matrix_builders", "DesignMatrixBuilder",
           "build_design_matrices"]

import itertools
import six

import numpy as np
from patsy import PatsyError
from patsy.categorical import (guess_categorical,
                               CategoricalSniffer,
                               categorical_to_int)
from patsy.util import (atleast_2d_column_default,
                        have_pandas, have_pandas_categorical,
                        asarray_or_pandas)
from patsy.design_info import DesignMatrix, DesignInfo
from patsy.redundancy import pick_contrasts_for_term
from patsy.desc import ModelDesc
from patsy.eval import EvalEnvironment
from patsy.contrasts import code_contrast_matrix, Treatment
from patsy.compat import OrderedDict
from patsy.missing import NAAction

if have_pandas:
    import pandas

class _MockFactor(object):
    def __init__(self, name="MOCKMOCK"):
        self._name = name

    def eval(self, state, env):
        return env["mock"]

    def name(self):
        return self._name

def _max_allowed_dim(dim, arr, factor):
    if arr.ndim > dim:
        msg = ("factor '%s' evaluates to an %s-dimensional array; I only "
               "handle arrays with dimension <= %s"
               % (factor.name(), arr.ndim, dim))
        raise PatsyError(msg, factor)

def test__max_allowed_dim():
    from nose.tools import assert_raises
    f = _MockFactor()
    _max_allowed_dim(1, np.array(1), f)
    _max_allowed_dim(1, np.array([1]), f)
    assert_raises(PatsyError, _max_allowed_dim, 1, np.array([[1]]), f)
    assert_raises(PatsyError, _max_allowed_dim, 1, np.array([[[1]]]), f)
    _max_allowed_dim(2, np.array(1), f)
    _max_allowed_dim(2, np.array([1]), f)
    _max_allowed_dim(2, np.array([[1]]), f)
    assert_raises(PatsyError, _max_allowed_dim, 2, np.array([[[1]]]), f)

class _NumFactorEvaluator(object):
    def __init__(self, factor, state, expected_columns):
        # This one instance variable is part of our public API:
        self.factor = factor
        self._state = state
        self._expected_columns = expected_columns

    # Returns either a 2d ndarray, or a DataFrame, plus is_NA mask
    def eval(self, data, NA_action):
        result = self.factor.eval(self._state, data)
        result = atleast_2d_column_default(result, preserve_pandas=True)
        _max_allowed_dim(2, result, self.factor)
        if result.shape[1] != self._expected_columns:
            raise PatsyError("when evaluating factor %s, I got %s columns "
                                "instead of the %s I was expecting"
                                % (self.factor.name(), self._expected_columns,
                                   result.shape[1]),
                                self.factor)
        if not np.issubdtype(np.asarray(result).dtype, np.number):
            raise PatsyError("when evaluating numeric factor %s, "
                                "I got non-numeric data of type '%s'"
                                % (self.factor.name(), result.dtype),
                                self.factor)
        return result, NA_action.is_numerical_NA(result)

def test__NumFactorEvaluator():
    from nose.tools import assert_raises
    naa = NAAction()
    f = _MockFactor()
    nf1 = _NumFactorEvaluator(f, {}, 1)
    assert nf1.factor is f
    eval123, is_NA = nf1.eval({"mock": [1, 2, 3]}, naa)
    assert eval123.shape == (3, 1)
    assert np.all(eval123 == [[1], [2], [3]])
    assert is_NA.shape == (3,)
    assert np.all(~is_NA)
    assert_raises(PatsyError, nf1.eval, {"mock": [[[1]]]}, naa)
    assert_raises(PatsyError, nf1.eval, {"mock": [[1, 2]]}, naa)
    assert_raises(PatsyError, nf1.eval, {"mock": ["a", "b"]}, naa)
    assert_raises(PatsyError, nf1.eval, {"mock": [True, False]}, naa)
    nf2 = _NumFactorEvaluator(_MockFactor(), {}, 2)
    eval123321, is_NA = nf2.eval({"mock": [[1, 3], [2, 2], [3, 1]]}, naa)
    assert eval123321.shape == (3, 2)
    assert np.all(eval123321 == [[1, 3], [2, 2], [3, 1]])
    assert is_NA.shape == (3,)
    assert np.all(~is_NA)
    assert_raises(PatsyError, nf2.eval, {"mock": [1, 2, 3]}, naa)
    assert_raises(PatsyError, nf2.eval, {"mock": [[1, 2, 3]]}, naa)

    ev_nan, is_NA = nf1.eval({"mock": [1, 2, np.nan]},
                             NAAction(NA_types=["NaN"]))
    assert np.array_equal(is_NA, [False, False, True])
    ev_nan, is_NA = nf1.eval({"mock": [1, 2, np.nan]},
                             NAAction(NA_types=[]))
    assert np.array_equal(is_NA, [False, False, False])

    if have_pandas:
        eval_ser, _ = nf1.eval({"mock":
                                pandas.Series([1, 2, 3], index=[10, 20, 30])},
                               naa)
        assert isinstance(eval_ser, pandas.DataFrame)
        assert np.array_equal(eval_ser, [[1], [2], [3]])
        assert np.array_equal(eval_ser.index, [10, 20, 30])
        eval_df1, _ = nf1.eval({"mock":
                                    pandas.DataFrame([[2], [1], [3]],
                                                     index=[20, 10, 30])},
                               naa)
        assert isinstance(eval_df1, pandas.DataFrame)
        assert np.array_equal(eval_df1, [[2], [1], [3]])
        assert np.array_equal(eval_df1.index, [20, 10, 30])
        eval_df2, _ = nf2.eval({"mock":
                                    pandas.DataFrame([[2, 3], [1, 4], [3, -1]],
                                                     index=[20, 30, 10])},
                               naa)
        assert isinstance(eval_df2, pandas.DataFrame)
        assert np.array_equal(eval_df2, [[2, 3], [1, 4], [3, -1]])
        assert np.array_equal(eval_df2.index, [20, 30, 10])
        
        assert_raises(PatsyError,
                      nf2.eval,
                      {"mock": pandas.Series([1, 2, 3], index=[10, 20, 30])},
                      naa)
        assert_raises(PatsyError,
                      nf1.eval,
                      {"mock":
                       pandas.DataFrame([[2, 3], [1, 4], [3, -1]],
                                        index=[20, 30, 10])},
                      naa)


class _CatFactorEvaluator(object):
    def __init__(self, factor, state, levels):
        # This one instance variable is part of our public API:
        self.factor = factor
        self._state = state
        self._levels = tuple(levels)

    # returns either a 1d ndarray or a pandas.Series, plus is_NA mask
    def eval(self, data, NA_action):
        result = self.factor.eval(self._state, data)
        result = categorical_to_int(result, self._levels, NA_action,
                                    origin=self.factor)
        assert result.ndim == 1
        return result, np.asarray(result == -1)

def test__CatFactorEvaluator():
    from nose.tools import assert_raises
    from patsy.categorical import C
    naa = NAAction()
    f = _MockFactor()
    cf1 = _CatFactorEvaluator(f, {}, ["a", "b"])
    assert cf1.factor is f
    cat1, _ = cf1.eval({"mock": ["b", "a", "b"]}, naa)
    assert cat1.shape == (3,)
    assert np.all(cat1 == [1, 0, 1])
    assert_raises(PatsyError, cf1.eval, {"mock": ["c"]}, naa)
    assert_raises(PatsyError, cf1.eval, {"mock": C(["a", "c"])}, naa)
    assert_raises(PatsyError, cf1.eval,
                  {"mock": C(["a", "b"], levels=["b", "a"])}, naa)
    assert_raises(PatsyError, cf1.eval, {"mock": [1, 0, 1]}, naa)
    bad_cat = np.asarray(["b", "a", "a", "b"])
    bad_cat.resize((2, 2))
    assert_raises(PatsyError, cf1.eval, {"mock": bad_cat}, naa)

    cat1_NA, is_NA = cf1.eval({"mock": ["a", None, "b"]},
                              NAAction(NA_types=["None"]))
    assert np.array_equal(is_NA, [False, True, False])
    assert np.array_equal(cat1_NA, [0, -1, 1])
    assert_raises(PatsyError, cf1.eval,
                  {"mock": ["a", None, "b"]}, NAAction(NA_types=[]))

    cf2 = _CatFactorEvaluator(_MockFactor(), {}, [False, True])
    cat2, _ = cf2.eval({"mock": [True, False, False, True]}, naa)
    assert cat2.shape == (4,)
    assert np.all(cat2 == [1, 0, 0, 1])

    if have_pandas:
        s = pandas.Series(["b", "a"], index=[10, 20])
        cat_s, _ = cf1.eval({"mock": s}, naa)
        assert isinstance(cat_s, pandas.Series)
        assert np.array_equal(cat_s, [1, 0])
        assert np.array_equal(cat_s.index, [10, 20])
        sbool = pandas.Series([True, False], index=[11, 21])
        cat_sbool, _ = cf2.eval({"mock": sbool}, naa)
        assert isinstance(cat_sbool, pandas.Series)
        assert np.array_equal(cat_sbool, [1, 0])
        assert np.array_equal(cat_sbool.index, [11, 21])

def _column_combinations(columns_per_factor):
    # For consistency with R, the left-most item iterates fastest:
    iterators = [range(n) for n in reversed(columns_per_factor)]
    for reversed_combo in itertools.product(*iterators):
        yield reversed_combo[::-1]

def test__column_combinations():
    assert list(_column_combinations([2, 3])) == [(0, 0),
                                                  (1, 0),
                                                  (0, 1),
                                                  (1, 1),
                                                  (0, 2),
                                                  (1, 2)]
    assert list(_column_combinations([3])) == [(0,), (1,), (2,)]

# This class is responsible for producing some columns in a final design
# matrix output:
class _ColumnBuilder(object):
    def __init__(self, factors, num_columns, cat_contrasts):
        self._factors = factors
        self._num_columns = num_columns
        self._cat_contrasts = cat_contrasts
        self._columns_per_factor = []
        for factor in self._factors:
            if factor in self._cat_contrasts:
                columns = self._cat_contrasts[factor].matrix.shape[1]
            else:
                columns = num_columns[factor]
            self._columns_per_factor.append(columns)
        self.total_columns = np.prod(self._columns_per_factor, dtype=int)

    def column_names(self):
        if not self._factors:
            return ["Intercept"]
        column_names = []
        for i, column_idxs in enumerate(_column_combinations(self._columns_per_factor)):
            name_pieces = []
            for factor, column_idx in zip(self._factors, column_idxs):
                if factor in self._num_columns:
                    if self._num_columns[factor] > 1:
                        name_pieces.append("%s[%s]"
                                           % (factor.name(), column_idx))
                    else:
                        assert column_idx == 0
                        name_pieces.append(factor.name())
                else:
                    contrast = self._cat_contrasts[factor]
                    suffix = contrast.column_suffixes[column_idx]
                    name_pieces.append("%s%s" % (factor.name(), suffix))
            column_names.append(":".join(name_pieces))
        assert len(column_names) == self.total_columns
        return column_names

    def build(self, factor_values, out):
        assert self.total_columns == out.shape[1]
        out[:] = 1
        for i, column_idxs in enumerate(_column_combinations(self._columns_per_factor)):
            for factor, column_idx in zip(self._factors, column_idxs):
                if factor in self._cat_contrasts:
                    contrast = self._cat_contrasts[factor]
                    if np.any(factor_values[factor] < 0):
                        raise PatsyError("can't build a design matrix "
                                         "containing missing values", factor)
                    out[:, i] *= contrast.matrix[factor_values[factor],
                                                 column_idx]
                else:
                    assert (factor_values[factor].shape[1]
                            == self._num_columns[factor])
                    out[:, i] *= factor_values[factor][:, column_idx]

def test__ColumnBuilder():
    from nose.tools import assert_raises
    from patsy.contrasts import ContrastMatrix
    from patsy.categorical import C
    f1 = _MockFactor("f1")
    f2 = _MockFactor("f2")
    f3 = _MockFactor("f3")
    contrast = ContrastMatrix(np.array([[0, 0.5],
                                        [3, 0]]),
                              ["[c1]", "[c2]"])
                             
    cb = _ColumnBuilder([f1, f2, f3], {f1: 1, f3: 1}, {f2: contrast})
    mat = np.empty((3, 2))
    assert cb.column_names() == ["f1:f2[c1]:f3", "f1:f2[c2]:f3"]
    cb.build({f1: atleast_2d_column_default([1, 2, 3]),
              f2: np.asarray([0, 0, 1]),
              f3: atleast_2d_column_default([7.5, 2, -12])},
             mat)
    assert np.allclose(mat, [[0, 0.5 * 1 * 7.5],
                             [0, 0.5 * 2 * 2],
                             [3 * 3 * -12, 0]])
    # Check that missing categorical values blow up
    assert_raises(PatsyError, cb.build,
                  {f1: atleast_2d_column_default([1, 2, 3]),
                   f2: np.asarray([0, -1, 1]),
                   f3: atleast_2d_column_default([7.5, 2, -12])},
                  mat)

    cb2 = _ColumnBuilder([f1, f2, f3], {f1: 2, f3: 1}, {f2: contrast})
    mat2 = np.empty((3, 4))
    cb2.build({f1: atleast_2d_column_default([[1, 2], [3, 4], [5, 6]]),
               f2: np.asarray([0, 0, 1]),
               f3: atleast_2d_column_default([7.5, 2, -12])},
              mat2)
    assert cb2.column_names() == ["f1[0]:f2[c1]:f3",
                                  "f1[1]:f2[c1]:f3",
                                  "f1[0]:f2[c2]:f3",
                                  "f1[1]:f2[c2]:f3"]
    assert np.allclose(mat2, [[0, 0, 0.5 * 1 * 7.5, 0.5 * 2 * 7.5],
                              [0, 0, 0.5 * 3 * 2, 0.5 * 4 * 2],
                              [3 * 5 * -12, 3 * 6 * -12, 0, 0]])
    # Check intercept building:
    cb_intercept = _ColumnBuilder([], {}, {})
    assert cb_intercept.column_names() == ["Intercept"]
    mat3 = np.empty((3, 1))
    cb_intercept.build({f1: [1, 2, 3], f2: [1, 2, 3], f3: [1, 2, 3]}, mat3)
    assert np.allclose(mat3, 1)

def _factors_memorize(factors, data_iter_maker):
    # First, start off the memorization process by setting up each factor's
    # state and finding out how many passes it will need:
    factor_states = {}
    passes_needed = {}
    for factor in factors:
        state = {}
        which_pass = factor.memorize_passes_needed(state)
        factor_states[factor] = state
        passes_needed[factor] = which_pass
    # Now, cycle through the data until all the factors have finished
    # memorizing everything:
    memorize_needed = set()
    for factor, passes in six.iteritems(passes_needed):
        if passes > 0:
            memorize_needed.add(factor)
    which_pass = 0
    while memorize_needed:
        for data in data_iter_maker():
            for factor in memorize_needed:
                state = factor_states[factor]
                factor.memorize_chunk(state, which_pass, data)
        for factor in list(memorize_needed):
            factor.memorize_finish(factor_states[factor], which_pass)
            if which_pass == passes_needed[factor] - 1:
                memorize_needed.remove(factor)
        which_pass += 1
    return factor_states

def test__factors_memorize():
    class MockFactor(object):
        def __init__(self, requested_passes, token):
            self._requested_passes = requested_passes
            self._token = token
            self._chunk_in_pass = 0
            self._seen_passes = 0

        def memorize_passes_needed(self, state):
            state["calls"] = []
            state["token"] = self._token
            return self._requested_passes

        def memorize_chunk(self, state, which_pass, data):
            state["calls"].append(("memorize_chunk", which_pass))
            assert data["chunk"] == self._chunk_in_pass
            self._chunk_in_pass += 1

        def memorize_finish(self, state, which_pass):
            state["calls"].append(("memorize_finish", which_pass))
            self._chunk_in_pass = 0

    class Data(object):
        CHUNKS = 3
        def __init__(self):
            self.calls = 0
            self.data = [{"chunk": i} for i in range(self.CHUNKS)]
        def __call__(self):
            self.calls += 1
            return iter(self.data)
    data = Data()
    f0 = MockFactor(0, "f0")
    f1 = MockFactor(1, "f1")
    f2a = MockFactor(2, "f2a")
    f2b = MockFactor(2, "f2b")
    factor_states = _factors_memorize(set([f0, f1, f2a, f2b]), data)
    assert data.calls == 2
    mem_chunks0 = [("memorize_chunk", 0)] * data.CHUNKS
    mem_chunks1 = [("memorize_chunk", 1)] * data.CHUNKS
    expected = {
        f0: {
            "calls": [],
            "token": "f0",
            },
        f1: {
            "calls": mem_chunks0 + [("memorize_finish", 0)],
            "token": "f1",
            },
        f2a: {
            "calls": mem_chunks0 + [("memorize_finish", 0)]
                     + mem_chunks1 + [("memorize_finish", 1)],
            "token": "f2a",
            },
        f2b: {
            "calls": mem_chunks0 + [("memorize_finish", 0)]
                     + mem_chunks1 + [("memorize_finish", 1)],
            "token": "f2b",
            },
        }
    assert factor_states == expected

def _examine_factor_types(factors, factor_states, data_iter_maker, NA_action):
    num_column_counts = {}
    cat_sniffers = {}
    examine_needed = set(factors)
    for data in data_iter_maker():
        for factor in list(examine_needed):
            value = factor.eval(factor_states[factor], data)
            if factor in cat_sniffers or guess_categorical(value):
                if factor not in cat_sniffers:
                    cat_sniffers[factor] = CategoricalSniffer(NA_action,
                                                              factor.origin)
                done = cat_sniffers[factor].sniff(value)
                if done:
                    examine_needed.remove(factor)
            else:
                # Numeric
                value = atleast_2d_column_default(value)
                _max_allowed_dim(2, value, factor)
                column_count = value.shape[1]
                num_column_counts[factor] = column_count
                examine_needed.remove(factor)
        if not examine_needed:
            break
    # Pull out the levels
    cat_levels_contrasts = {}
    for factor, sniffer in six.iteritems(cat_sniffers):
        cat_levels_contrasts[factor] = sniffer.levels_contrast()
    return (num_column_counts, cat_levels_contrasts)

def test__examine_factor_types():
    from patsy.categorical import C
    class MockFactor(object):
        def __init__(self):
            # You should check this using 'is', not '=='
            from patsy.origin import Origin
            self.origin = Origin("MOCK", 1, 2)

        def eval(self, state, data):
            return state[data]

        def name(self):
            return "MOCK MOCK"

    # This hacky class can only be iterated over once, but it keeps track of
    # how far it got.
    class DataIterMaker(object):
        def __init__(self):
            self.i = -1

        def __call__(self):
            return self

        def __iter__(self):
            return self

        def next(self):
            self.i += 1
            if self.i > 1:
                raise StopIteration
            return self.i
        __next__ = next

    num_1dim = MockFactor()
    num_1col = MockFactor()
    num_4col = MockFactor()
    categ_1col = MockFactor()
    bool_1col = MockFactor()
    string_1col = MockFactor()
    object_1col = MockFactor()
    object_levels = (object(), object(), object())
    factor_states = {
        num_1dim: ([1, 2, 3], [4, 5, 6]),
        num_1col: ([[1], [2], [3]], [[4], [5], [6]]),
        num_4col: (np.zeros((3, 4)), np.ones((3, 4))),
        categ_1col: (C(["a", "b", "c"], levels=("a", "b", "c"),
                       contrast="MOCK CONTRAST"),
                     C(["c", "b", "a"], levels=("a", "b", "c"),
                       contrast="MOCK CONTRAST")),
        bool_1col: ([True, True, False], [False, True, True]),
        # It has to read through all the data to see all the possible levels:
        string_1col: (["a", "a", "a"], ["c", "b", "a"]),
        object_1col: ([object_levels[0]] * 3, object_levels),
        }

    it = DataIterMaker()
    (num_column_counts, cat_levels_contrasts,
     ) = _examine_factor_types(factor_states.keys(), factor_states, it,
                               NAAction())
    assert it.i == 2
    iterations = 0
    assert num_column_counts == {num_1dim: 1, num_1col: 1, num_4col: 4}
    assert cat_levels_contrasts == {
        categ_1col: (("a", "b", "c"), "MOCK CONTRAST"),
        bool_1col: ((False, True), None),
        string_1col: (("a", "b", "c"), None),
        object_1col: (tuple(sorted(object_levels, key=id)), None),
        }

    # Check that it doesn't read through all the data if that's not necessary:
    it = DataIterMaker()
    no_read_necessary = [num_1dim, num_1col, num_4col, categ_1col, bool_1col]
    (num_column_counts, cat_levels_contrasts,
     ) = _examine_factor_types(no_read_necessary, factor_states, it,
                               NAAction())
    assert it.i == 0
    assert num_column_counts == {num_1dim: 1, num_1col: 1, num_4col: 4}
    assert cat_levels_contrasts == {
        categ_1col: (("a", "b", "c"), "MOCK CONTRAST"),
        bool_1col: ((False, True), None),
        }

    # Illegal inputs:
    bool_3col = MockFactor()
    num_3dim = MockFactor()
    # no such thing as a multi-dimensional Categorical
    # categ_3dim = MockFactor()
    string_3col = MockFactor()
    object_3col = MockFactor()
    illegal_factor_states = {
        num_3dim: (np.zeros((3, 3, 3)), np.ones((3, 3, 3))),
        string_3col: ([["a", "b", "c"]], [["b", "c", "a"]]),
        object_3col: ([[[object()]]], [[[object()]]]),
        }
    from nose.tools import assert_raises
    for illegal_factor in illegal_factor_states:
        it = DataIterMaker()
        try:
            _examine_factor_types([illegal_factor], illegal_factor_states, it,
                                  NAAction())
        except PatsyError as e:
            assert e.origin is illegal_factor.origin
        else:
            assert False

def _make_term_column_builders(terms,
                               num_column_counts,
                               cat_levels_contrasts):
    # Sort each term into a bucket based on the set of numeric factors it
    # contains:
    term_buckets = OrderedDict()
    bucket_ordering = []
    for term in terms:
        num_factors = []
        for factor in term.factors:
            if factor in num_column_counts:
                num_factors.append(factor)
        bucket = frozenset(num_factors)
        if bucket not in term_buckets:
            bucket_ordering.append(bucket)
        term_buckets.setdefault(bucket, []).append(term)
    # Special rule: if there is a no-numerics bucket, then it always comes
    # first:
    if frozenset() in term_buckets:
        bucket_ordering.remove(frozenset())
        bucket_ordering.insert(0, frozenset())
    term_to_column_builders = {}
    new_term_order = []
    # Then within each bucket, work out which sort of contrasts we want to use
    # for each term to avoid redundancy
    for bucket in bucket_ordering:
        bucket_terms = term_buckets[bucket]
        # Sort by degree of interaction
        bucket_terms.sort(key=lambda t: len(t.factors))
        new_term_order += bucket_terms
        used_subterms = set()
        for term in bucket_terms:
            column_builders = []
            factor_codings = pick_contrasts_for_term(term,
                                                     num_column_counts,
                                                     used_subterms)
            # Construct one _ColumnBuilder for each subterm
            for factor_coding in factor_codings:
                builder_factors = []
                num_columns = {}
                cat_contrasts = {}
                # In order to preserve factor ordering information, the
                # coding_for_term just returns dicts, and we refer to
                # the original factors to figure out which are included in
                # each subterm, and in what order
                for factor in term.factors:
                    # Numeric factors are included in every subterm
                    if factor in num_column_counts:
                        builder_factors.append(factor)
                        num_columns[factor] = num_column_counts[factor]
                    elif factor in factor_coding:
                        builder_factors.append(factor)
                        levels, contrast = cat_levels_contrasts[factor]
                        # This is where the default coding is set to
                        # Treatment:
                        coded = code_contrast_matrix(factor_coding[factor],
                                                     levels, contrast,
                                                     default=Treatment)
                        cat_contrasts[factor] = coded
                column_builder = _ColumnBuilder(builder_factors,
                                                num_columns,
                                                cat_contrasts)
                column_builders.append(column_builder)
            term_to_column_builders[term] = column_builders
    return new_term_order, term_to_column_builders

def design_matrix_builders(termlists, data_iter_maker, NA_action="drop"):
    """Construct several :class:`DesignMatrixBuilders` from termlists.

    This is one of Patsy's fundamental functions. This function and
    :func:`build_design_matrices` together form the API to the core formula
    interpretation machinery.

    :arg termlists: A list of termlists, where each termlist is a list of
      :class:`Term` objects which together specify a design matrix.
    :arg data_iter_maker: A zero-argument callable which returns an iterator
      over dict-like data objects. This must be a callable rather than a
      simple iterator because sufficiently complex formulas may require
      multiple passes over the data (e.g. if there are nested stateful
      transforms).
    :arg NA_action: An :class:`NAAction` object or string, used to determine
      what values count as 'missing' for purposes of determining the levels of
      categorical factors.
    :returns: A list of :class:`DesignMatrixBuilder` objects, one for each
      termlist passed in.

    This function performs zero or more iterations over the data in order to
    sniff out any necessary information about factor types, set up stateful
    transforms, pick column names, etc.

    See :ref:`formulas` for details.

    .. versionadded:: 0.2.0
       The ``NA_action`` argument.
    """
    if isinstance(NA_action, str):
        NA_action = NAAction(NA_action)
    all_factors = set()
    for termlist in termlists:
        for term in termlist:
            all_factors.update(term.factors)
    factor_states = _factors_memorize(all_factors, data_iter_maker)
    # Now all the factors have working eval methods, so we can evaluate them
    # on some data to find out what type of data they return.
    (num_column_counts,
     cat_levels_contrasts) = _examine_factor_types(all_factors,
                                                   factor_states,
                                                   data_iter_maker,
                                                   NA_action)
    # Now we need the factor evaluators, which encapsulate the knowledge of
    # how to turn any given factor into a chunk of data:
    factor_evaluators = {}
    for factor in all_factors:
        if factor in num_column_counts:
            evaluator = _NumFactorEvaluator(factor,
                                            factor_states[factor],
                                            num_column_counts[factor])
        else:
            assert factor in cat_levels_contrasts
            levels = cat_levels_contrasts[factor][0]
            evaluator = _CatFactorEvaluator(factor, factor_states[factor],
                                            levels)
        factor_evaluators[factor] = evaluator
    # And now we can construct the DesignMatrixBuilder for each termlist:
    builders = []
    for termlist in termlists:
        result = _make_term_column_builders(termlist,
                                            num_column_counts,
                                            cat_levels_contrasts)
        new_term_order, term_to_column_builders = result
        assert frozenset(new_term_order) == frozenset(termlist)
        term_evaluators = set()
        for term in termlist:
            for factor in term.factors:
                term_evaluators.add(factor_evaluators[factor])
        builders.append(DesignMatrixBuilder(new_term_order,
                                            term_evaluators,
                                            term_to_column_builders))
    return builders

class DesignMatrixBuilder(object):
    """An opaque class representing Patsy's knowledge about
    how to build a specific design matrix.

    You get these objects from :func:`design_matrix_builders`, and pass them
    to :func:`build_design_matrices`.
    """
    def __init__(self, terms, evaluators, term_to_column_builders):
        self._termlist = terms
        self._evaluators = evaluators
        self._term_to_column_builders = term_to_column_builders
        term_column_count = []
        self._column_names = []
        for term in self._termlist:
            column_builders = self._term_to_column_builders[term]
            this_count = 0
            for column_builder in column_builders:
                this_names = column_builder.column_names()
                this_count += len(this_names)
                self._column_names += this_names
            term_column_count.append(this_count)
        term_column_starts = np.concatenate(([0], np.cumsum(term_column_count)))
        self._term_slices = []
        for i, term in enumerate(self._termlist):
            span = slice(term_column_starts[i], term_column_starts[i + 1])
            self._term_slices.append((term, span))
        self.total_columns = np.sum(term_column_count, dtype=int)

    # Generate this on demand, to avoid a reference loop:
    @property
    def design_info(self):
        """A :class:`DesignInfo` object giving information about the design
        matrices that this DesignMatrixBuilder can be used to create."""
        return DesignInfo(self._column_names, self._term_slices,
                          builder=self)

    def subset(self, which_terms):
        """Create a new :class:`DesignMatrixBuilder` that includes only a
        subset of the terms that this object does.

        For example, if `builder` has terms `x`, `y`, and `z`, then::

          builder2 = builder.subset(["x", "z"])

        will return a new builder that will return design matrices with only
        the columns corresponding to the terms `x` and `z`. After we do this,
        then in general these two expressions will return the same thing (here
        we assume that `x`, `y`, and `z` each generate a single column of the
        output)::

          build_design_matrix([builder], data)[0][:, [0, 2]]
          build_design_matrix([builder2], data)[0]

        However, a critical difference is that in the second case, `data` need
        not contain any values for `y`. This is very useful when doing
        prediction using a subset of a model, in which situation R usually
        forces you to specify dummy values for `y`.

        If using a formula to specify the terms to include, remember that like
        any formula, the intercept term will be included by default, so use
        `0` or `-1` in your formula if you want to avoid this.

        :arg which_terms: The terms which should be kept in the new
          :class:`DesignMatrixBuilder`. If this is a string, then it is parsed
          as a formula, and then the names of the resulting terms are taken as
          the terms to keep. If it is a list, then it can contain a mixture of
          term names (as strings) and :class:`Term` objects.

        .. versionadded: 0.2.0
        """
        factor_to_evaluators = {}
        for evaluator in self._evaluators:
            factor_to_evaluators[evaluator.factor] = evaluator
        design_info = self.design_info
        term_name_to_term = dict(zip(design_info.term_names,
                                     design_info.terms))
        if isinstance(which_terms, str):
            # We don't use this EvalEnvironment -- all we want to do is to
            # find matching terms, and we can't do that use == on Term
            # objects, because that calls == on factor objects, which in turn
            # compares EvalEnvironments. So all we do with the parsed formula
            # is pull out the term *names*, which the EvalEnvironment doesn't
            # effect. This is just a placeholder then to allow the ModelDesc
            # to be created:
            env = EvalEnvironment({})
            desc = ModelDesc.from_formula(which_terms, env)
            if desc.lhs_termlist:
                raise PatsyError("right-hand-side-only formula required")
            which_terms = [term.name() for term in desc.rhs_termlist]
        terms = []
        evaluators = set()
        term_to_column_builders = {}
        for term_or_name in which_terms:
            if isinstance(term_or_name, six.string_types):
                if term_or_name not in term_name_to_term:
                    raise PatsyError("requested term %r not found in "
                                     "this DesignMatrixBuilder"
                                     % (term_or_name,))
                term = term_name_to_term[term_or_name]
            else:
                term = term_or_name
            if term not in self._termlist:
                raise PatsyError("requested term '%s' not found in this "
                                 "DesignMatrixBuilder" % (term,))
            for factor in term.factors:
                evaluators.add(factor_to_evaluators[factor])
            terms.append(term)
            column_builder = self._term_to_column_builders[term]
            term_to_column_builders[term] = column_builder
        return DesignMatrixBuilder(terms,
                                   evaluators,
                                   term_to_column_builders)

    def _build(self, evaluator_to_values, dtype):
        factor_to_values = {}
        need_reshape = False
        num_rows = None
        for evaluator, value in six.iteritems(evaluator_to_values):
            if evaluator in self._evaluators:
                factor_to_values[evaluator.factor] = value
                if num_rows is not None:
                    assert num_rows == value.shape[0]
                else:
                    num_rows = value.shape[0]
        if num_rows is None:
            # We have no dependence on the data -- e.g. an empty termlist, or
            # only an intercept term.
            num_rows = 1
            need_reshape = True
        m = DesignMatrix(np.empty((num_rows, self.total_columns), dtype=dtype),
                         self.design_info)
        start_column = 0
        for term in self._termlist:
            for column_builder in self._term_to_column_builders[term]:
                end_column = start_column + column_builder.total_columns
                m_slice = m[:, start_column:end_column]
                column_builder.build(factor_to_values, m_slice)
                start_column = end_column
        assert start_column == self.total_columns
        return need_reshape, m

class _CheckMatch(object):
    def __init__(self, name, eq_fn):
        self._name = name
        self._eq_fn = eq_fn
        self.value = None
        self._value_desc = None
        self._value_origin = None

    def check(self, seen_value, desc, origin):
        if self.value is None:
            self.value = seen_value
            self._value_desc = desc
            self._value_origin = origin
        else:
            if not self._eq_fn(self.value, seen_value):
                msg = ("%s mismatch between %s and %s"
                       % (self._name, self._value_desc, desc))
                if isinstance(self.value, int):
                    msg += " (%r versus %r)" % (self.value, seen_value)
                # XX FIXME: this is a case where having discontiguous Origins
                # would be useful...
                raise PatsyError(msg, origin)

def build_design_matrices(builders, data,
                          NA_action="drop",
                          return_type="matrix",
                          dtype=np.dtype(float)):
    """Construct several design matrices from :class:`DesignMatrixBuilder`
    objects.

    This is one of Patsy's fundamental functions. This function and
    :func:`design_matrix_builders` together form the API to the core formula
    interpretation machinery.

    :arg builders: A list of :class:`DesignMatrixBuilders` specifying the
      design matrices to be built.
    :arg data: A dict-like object which will be used to look up data.
    :arg NA_action: What to do with rows that contain missing values. You can
      ``"drop"`` them, ``"raise"`` an error, or for customization, pass an
      :class:`NAAction` object. See :class:`NAAction` for details on what
      values count as 'missing' (and how to alter this).
    :arg return_type: Either ``"matrix"`` or ``"dataframe"``. See below.
    :arg dtype: The dtype of the returned matrix. Useful if you want to use
      single-precision or extended-precision.

    This function returns either a list of :class:`DesignMatrix` objects (for
    ``return_type="matrix"``) or a list of :class:`pandas.DataFrame` objects
    (for ``return_type="dataframe"``). In both cases, all returned design
    matrices will have ``.design_info`` attributes containing the appropriate
    :class:`DesignInfo` objects.

    Note that unlike :func:`design_matrix_builders`, this function takes only
    a simple data argument, not any kind of iterator. That's because this
    function doesn't need a global view of the data -- everything that depends
    on the whole data set is already encapsulated in the `builders`. If you
    are incrementally processing a large data set, simply call this function
    for each chunk.

    Index handling: This function always checks for indexes in the following
    places:

    * If ``data`` is a :class:`pandas.DataFrame`, its ``.index`` attribute.
    * If any factors evaluate to a :class:`pandas.Series` or
      :class:`pandas.DataFrame`, then their ``.index`` attributes.

    If multiple indexes are found, they must be identical (same values in the
    same order). If no indexes are found, then a default index is generated
    using ``np.arange(num_rows)``. One way or another, we end up with a single
    index for all the data. If ``return_type="dataframe"``, then this index is
    used as the index of the returned DataFrame objects. Examining this index
    makes it possible to determine which rows were removed due to NAs.

    Determining the number of rows in design matrices: This is not as obvious
    as it might seem, because it's possible to have a formula like "~ 1" that
    doesn't depend on the data (it has no factors). For this formula, it's
    obvious what every row in the design matrix should look like (just the
    value ``1``); but, how many rows like this should there be? To determine
    the number of rows in a design matrix, this function always checks in the
    following places:

    * If ``data`` is a :class:`pandas.DataFrame`, then its number of rows.
    * The number of entries in any factors present in any of the design
    * matrices being built.

    All these values much match. In particular, if this function is called to
    generate multiple design matrices at once, then they must all have the
    same number of rows.

    .. versionadded:: 0.2.0
       The ``NA_action`` argument.
    """
    if isinstance(NA_action, str):
        NA_action = NAAction(NA_action)
    if return_type == "dataframe" and not have_pandas:
        raise PatsyError("pandas.DataFrame was requested, but pandas "
                            "is not installed")
    if return_type not in ("matrix", "dataframe"):
        raise PatsyError("unrecognized output type %r, should be "
                            "'matrix' or 'dataframe'" % (return_type,))
    # Evaluate factors
    evaluator_to_values = {}
    evaluator_to_isNAs = {}
    import operator
    rows_checker = _CheckMatch("Number of rows", lambda a, b: a == b)
    index_checker = _CheckMatch("Index", lambda a, b: a.equals(b))
    if have_pandas and isinstance(data, pandas.DataFrame):
        index_checker.check(data.index, "data.index", None)
        rows_checker.check(data.shape[0], "data argument", None)
    for builder in builders:
        # We look at evaluators rather than factors here, because it might
        # happen that we have the same factor twice, but with different
        # memorized state.
        for evaluator in builder._evaluators:
            if evaluator not in evaluator_to_values:
                value, is_NA = evaluator.eval(data, NA_action)
                evaluator_to_isNAs[evaluator] = is_NA
                # value may now be a Series, DataFrame, or ndarray
                name = evaluator.factor.name()
                origin = evaluator.factor.origin
                rows_checker.check(value.shape[0], name, origin)
                if (have_pandas
                    and isinstance(value, (pandas.Series, pandas.DataFrame))):
                    index_checker.check(value.index, name, origin)
                # Strategy: we work with raw ndarrays for doing the actual
                # combining; DesignMatrixBuilder objects never sees pandas
                # objects. Then at the end, if a DataFrame was requested, we
                # convert. So every entry in this dict is either a 2-d array
                # of floats, or a 1-d array of integers (representing
                # categories).
                value = np.asarray(value)
                evaluator_to_values[evaluator] = value
    # Handle NAs
    values = list(evaluator_to_values.values())
    is_NAs = list(evaluator_to_isNAs.values())
    origins = [evaluator.factor.origin for evaluator in evaluator_to_values]
    pandas_index = index_checker.value
    num_rows = rows_checker.value
    # num_rows is None iff evaluator_to_values (and associated sets like
    # 'values') are empty, i.e., we have no actual evaluators involved
    # (formulas like "~ 1").
    if return_type == "dataframe" and num_rows is not None:
        if pandas_index is None:
            pandas_index = np.arange(num_rows)
        values.append(pandas_index)
        is_NAs.append(np.zeros(len(pandas_index), dtype=bool))
        origins.append(None)
    new_values = NA_action.handle_NA(values, is_NAs, origins)
    # NA_action may have changed the number of rows.
    if new_values:
        num_rows = new_values[0].shape[0]
    if return_type == "dataframe" and num_rows is not None:
        pandas_index = new_values.pop()
    evaluator_to_values = dict(zip(evaluator_to_values, new_values))
    # Build factor values into matrices
    results = []
    for builder in builders:
        results.append(builder._build(evaluator_to_values, dtype))
    matrices = []
    for need_reshape, matrix in results:
        if need_reshape:
            # There is no data-dependence, at all -- a formula like "1 ~ 1".
            # In this case the builder just returns a single-row matrix, and
            # we have to broadcast it vertically to the appropriate size. If
            # we can figure out what that is...
            assert matrix.shape[0] == 1
            if num_rows is not None:
                matrix = DesignMatrix(np.repeat(matrix, num_rows, axis=0),
                                      matrix.design_info)
            else:
                raise PatsyError(
                    "No design matrix has any non-trivial factors, "
                    "the data object is not a DataFrame. "
                    "I can't tell how many rows the design matrix should "
                    "have!"
                    )
        matrices.append(matrix)
    if return_type == "dataframe":
        assert have_pandas
        for i, matrix in enumerate(matrices):
            di = matrix.design_info
            matrices[i] = pandas.DataFrame(matrix,
                                           columns=di.column_names,
                                           index=pandas_index)
            matrices[i].design_info = di
    return matrices

# It should be possible to do just the factors -> factor evaluators stuff
# alone, since that, well, makes logical sense to do. though categorical
# coding has to happen afterwards, hmm.