This file is indexed.

/usr/share/pyshared/pychart/chart_data.py is in python-pychart 1.39-7.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
#
# Copyright (C) 2000-2005 by Yasushi Saito (yasushi.saito@gmail.com)
# 
# Jockey is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 2, or (at your option) any
# later version.
#
# Jockey is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
import pychart_util
import copy
import math

def _convert_item(v, typ, line):
    if typ == "a":
        try:
            i = float(v)
        except ValueError: # non-number
            i = v
        return i
    elif typ == "d":
        try:
            return int(v)
        except ValueError:
            raise ValueError, "Can't convert %s to int; line=%s" % (v, line)
    elif typ == "f":
        try:
            return float(v)
        except ValueError:
            raise ValueError, "Can't convert %s to float; line=%s" % (v, line)
    elif typ == "s":
        return v
    else:
        raise ValueError, "Unknown conversion type, type=%s; line=%s" % (typ,line)
        
def parse_line(line, delim):
    if delim.find("%") < 0:
        return [ _convert_item(item, "a", None) for item in line.split(delim) ]
    
    data = []
    idx = 0 # indexes delim
    ch = 'f'
    sep = ','

    while idx < len(delim):
        if delim[idx] != '%':
            raise ValueError, 'Bad delimitor: "%s"' % delim
        ch = delim[idx+1]
        idx += 2
        sep = ""
        while idx < len(delim) and delim[idx] != '%':
            sep += delim[idx]
            idx += 1

        if sep != "":
            xx = line.split(sep, 1)
        else:
            # reached the end of the delimiter string.
            xx = (line, )
            
        data.append(_convert_item(xx[0], ch, line))
        if len(xx) >= 2:
            line = xx[1]
        else:
            line = ""
            break

    if line != "":
        for item in line.split(sep):
            data.append(_convert_item(item, ch, line))
    return data

def escape_string(str):
    return str.replace("/", "//")

def extract_rows(data, *rows):
    """Extract rows specified in the argument list.

>>> chart_data.extract_rows([[10,20], [30,40], [50,60]], 1, 2)
[[30,40],[50,60]]
"""
    try:
        # for python 2.2
        # return [data[r] for r in rows]
        out = []
        for r in rows:
            out.append(data[r])
        return out
    except IndexError:
        raise IndexError, "data=%s rows=%s" % (data, rows)
    return out

def extract_columns(data, *cols):
    """Extract columns specified in the argument list.

>>> chart_data.extract_columns([[10,20], [30,40], [50,60]], 0)
[[10],[30],[50]]
"""
    out = []
    try:
        # for python 2.2:
        # return [ [r[c] for c in cols] for r in data]
        for r in data:
            col = []
            for c in cols:
                col.append(r[c])
            out.append(col)
    except IndexError:
        raise IndexError, "data=%s col=%s" % (data, col)        
    return out

            
            

def moving_average(data, xcol, ycol, width):
    """Compute the moving average of  YCOL'th column of each sample point
in  DATA. In particular, for each element  I in  DATA,
this function extracts up to  WIDTH*2+1 elements, consisting of
 I itself,  WIDTH elements before  I, and  WIDTH
elements after  I. It then computes the mean of the  YCOL'th
column of these elements, and it composes a two-element sample
consisting of  XCOL'th element and the mean.

>>> data = [[10,20], [20,30], [30,50], [40,70], [50,5]]
... chart_data.moving_average(data, 0, 1, 1)
[(10, 25.0), (20, 33.333333333333336), (30, 50.0), (40, 41.666666666666664), (50, 37.5)]

  The above value actually represents:

[(10, (20+30)/2), (20, (20+30+50)/3), (30, (30+50+70)/3), 
  (40, (50+70+5)/3), (50, (70+5)/2)]

"""

    
    out = []
    try:
        for i in range(len(data)):
            n = 0
            total = 0
            for j in range(i-width, i+width+1):
                if j >= 0 and j < len(data):
                    total += data[j][ycol]
                    n += 1
            out.append((data[i][xcol], float(total) / n))
    except IndexError:
        raise IndexError, "bad data: %s,xcol=%d,ycol=%d,width=%d" % (data,xcol,ycol,width)
    
    return out
    
def filter(func, data):
    """Parameter <func> must be a single-argument
    function that takes a sequence (i.e.,
a sample point) and returns a boolean. This procedure calls <func> on
each element in <data> and returns a list comprising elements for
which <func> returns True.

>>> data = [[1,5], [2,10], [3,13], [4,16]]
... chart_data.filter(lambda x: x[1] % 2 == 0, data)
[[2,10], [4,16]].
"""
    
    out = []
    for r in data:
	if func(r):
	    out.append(r)
    return out

def transform(func, data):
    """Apply <func> on each element in <data> and return the list
consisting of the return values from <func>.

>>> data = [[10,20], [30,40], [50,60]]
... chart_data.transform(lambda x: [x[0], x[1]+1], data)
[[10, 21], [30, 41], [50, 61]]

"""
    out = []
    for r in data:
        out.append(func(r))
    return out

def aggregate_rows(data, col):
    out = copy.deepcopy(data)
    total = 0
    for r in out:
        total += r[col]
        r[col] = total
    return out

def empty_line_p(s):
    return s.strip() == ""

def _try_open_file(path, mode, error_message):
    try:
        fd = open(path, mode)
    except TypeError:
        fd = path
        if not getattr(fd, "readline", None):
            raise TypeError, error_message + "(got %s)" % str(fd)
    return fd

def _try_close_file(fd, path):
    if fd != path:
        fd.close()
        
def read_csv(path, delim = ','):

    """This function reads comma-separated values from a
    file. Parameter <path> is either a pathname or a file-like object
    that supports the |readline()| method.

    Empty lines and lines
    beginning with "#" are ignored.  Parameter <delim> specifies how
    a line is separated into values. If it does not contain the
    letter "%", then <delim> marks the end of a value.
    Otherwise, this function acts like scanf in C:

chart_data.read_csv('file', '%d,%s:%d')

    Paramter <delim> currently supports
    only three conversion format specifiers:
    "d"(int), "f"(double), and "s"(string)."""

    fd = _try_open_file(path, 'r', 
                        'The first argument must be a pathname or an object that supports readline() method')

    data = []
    line = fd.readline()
    while line != "":
        if line[0] != '#' and not empty_line_p(line):
            data.append(parse_line(line, delim))
        line = fd.readline()

    _try_close_file(fd, path)
    return data

def fread_csv(fd, delim = ','):
    """This function is deprecated. Use read_csv instead."""
    pychart_util.warn("chart_data.fread_csv is deprecated. Use read_csv instead.")
    return read_csv(fd, delim)


def write_csv(path, data):

    """This function writes comma-separated <data> to
    <path>. Parameter <path> is either a pathname or a file-like
    object that supports the |write()| method."""

    fd = _try_open_file(path, 'w',
                        'The first argument must be a pathname or an object that supports write() method')
    for v in data:
        fd.write(",".join([str(x) for x in v]))
        fd.write("\n")
    _try_close_file(fd, path)

def fwrite_csv(fd, delim = ','):
    """This function is deprecated. Use write_csv instead."""
    pychart_util.warn("chart_data.fwrite_csv is deprecated. Use write_csv instead.")
    return write_csv(fd, delim)

def read_str(delim = ',', *lines):
    """This function is similar to read_csv, but it reads data from the
    list of <lines>.

fd = open("foo", "r")
data = chart_data.read_str(",", fd.readlines())"""

    data = []
    for line in lines:
        com = parse_line(line, delim)
        data.append(com)
    return data
    
def func(f, xmin, xmax, step = None):
    """Create sample points from function <f>, which must be a
    single-parameter function that returns a number (e.g., math.sin).
    Parameters <xmin> and <xmax> specify the first and last X values, and
    <step> specifies the sampling interval.

>>> chart_data.func(math.sin, 0, math.pi * 4, math.pi / 2)
[(0, 0.0), (1.5707963267948966, 1.0), (3.1415926535897931, 1.2246063538223773e-16), (4.7123889803846897, -1.0), (6.2831853071795862, -2.4492127076447545e-16), (7.8539816339744828, 1.0), (9.4247779607693793, 3.6738190614671318e-16), (10.995574287564276, -1.0)]

"""
    
    data = []
    x = xmin
    if not step:
        step = (xmax - xmin) / 100.0
    while x < xmax:
        data.append((x, f(x)))
        x += step
    return data

def _nr_data(data, col):
    nr_data = 0
    for d in data:
        nr_data += d[col]
    return nr_data
    
def median(data, freq_col=1):
    """Compute the median of the <freq_col>'th column of the values is <data>.

>>> chart_data.median([(10,20), (20,4), (30,5)], 0)
20
>>> chart_data.median([(10,20), (20,4), (30,5)], 1)
5.
    """
    
    nr_data = _nr_data(data, freq_col)
    median_idx = nr_data / 2
    i = 0
    for d in data:
        i += d[freq_col]
        if i >= median_idx:
            return d
    raise Exception, "??? median ???"

def cut_extremes(data, cutoff_percentage, freq_col=1):
    nr_data = _nr_data(data, freq_col)
    min_idx = nr_data * cutoff_percentage / 100.0
    max_idx = nr_data * (100 - cutoff_percentage) / 100.0
    r = []
    
    i = 0
    for d in data:
        if i < min_idx:
            if i + d[freq_col] >= min_idx:
                x = copy.deepcopy(d)
                x[freq_col] = x[freq_col] - (min_idx - i)
                r.append(x)
            i += d[freq_col]
            continue
	elif i + d[freq_col] >= max_idx:
            if i < max_idx and i + d[freq_col] >= max_idx:
                x = copy.deepcopy(d)
                x[freq_col] = x[freq_col] - (max_idx - i)
                r.append(x)
            break
        i += d[freq_col]
        r.append(d)
    return r

def mean(data, val_col, freq_col):
    nr_data = 0
    sum = 0
    for d in data:
        sum += d[val_col] * d[freq_col]
        nr_data += d[freq_col]
    if nr_data == 0:
	raise IndexError, "data is empty"

    return sum / float(nr_data)

def mean_samples(data, xcol, ycollist):
    """Create a sample list that contains
    the mean of the original list.

>>> chart_data.mean_samples([ [1, 10, 15], [2, 5, 10], [3, 8, 33] ], 0, (1, 2))
[(1, 12.5), (2, 7.5), (3, 20.5)]
"""
    out = []
    numcol = len(ycollist)
    try:
        for elem in data:
            v = 0
            for col in ycollist:
                v += elem[col]
            out.append( (elem[xcol], float(v) / numcol) )
    except IndexError:
        raise IndexError, "bad data: %s,xcol=%d,ycollist=%s" % (data,xcol,ycollist)
    
    return out

def stddev_samples(data, xcol, ycollist, delta = 1.0):
    """Create a sample list that contains the mean and standard deviation of the original list. Each element in the returned list contains following values: [MEAN, STDDEV, MEAN - STDDEV*delta, MEAN + STDDEV*delta].

>>> chart_data.stddev_samples([ [1, 10, 15, 12, 15], [2, 5, 10, 5, 10], [3, 32, 33, 35, 36], [4,16,66, 67, 68] ], 0, range(1,5))
[(1, 13.0, 2.1213203435596424, 10.878679656440358, 15.121320343559642), (2, 7.5, 2.5, 5.0, 10.0), (3, 34.0, 1.5811388300841898, 32.418861169915807, 35.581138830084193), (4, 54.25, 22.094965489902897, 32.155034510097103, 76.344965489902904)]
"""
    out = []
    numcol = len(ycollist)
    try:
        for elem in data:
            total = 0
            for col in ycollist:
                total += elem[col]
            mean = float(total) / numcol
            variance = 0
            for col in ycollist:
                variance += (mean - elem[col]) ** 2
            stddev = math.sqrt(variance / numcol) * delta
            out.append( (elem[xcol], mean, stddev, mean-stddev, mean+stddev) )
            
            
            
    except IndexError:
        raise IndexError, "bad data: %s,xcol=%d,ycollist=%s" % (data,xcol,ycollist)
    return out

def nearest_match(data, col, val):
    min_delta = None
    match = None
    
    for d in data:
        if min_delta == None or abs(d[col] - val) < min_delta:
            min_delta = abs(d[col] - val)
            match = d
    pychart_util.warn("XXX ", match)
    return match