This file is indexed.

/usr/share/pyshared/pyentropy/maxent.py is in python-pyentropy 0.4.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
#    This file is part of pyEntropy
#
#    pyEntropy is free software: you can redistribute it and/or modify
#    it under the terms of the GNU General Public License as published by
#    the Free Software Foundation, either version 2 of the License, or
#    (at your option) any later version.
#
#    pyEntropy is distributed in the hope that it will be useful,
#    but WITHOUT ANY WARRANTY; without even the implied warranty of
#    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#    GNU General Public License for more details.
#
#    You should have received a copy of the GNU General Public License
#    along with pyEntropy. If not, see <http://www.gnu.org/licenses/>.
#
#    Copyright 2009, 2010 Robin Ince
"""
Module for computing finite-alphabet maximum entropy solutions using a 
coordinate transform method

For details of the method see:

    Ince, R. A. A., Petersen, R. S., Swan, D. C., Panzeri, S., 2009
    "Python for Information Theoretic Analysis of Neural Data", 
    Frontiers in Neuroinformatics 3:4 doi:10.3389/neuro.11.004.2009
    http://www.frontiersin.org/neuroinformatics/paper/10.3389/neuro.11/004.2009/
    
If you use this code in a published work, please cite the above paper.

The generated transformation matrices for a given set of parameters are 
stored to disk. The default location for the cache is a ``.pyentropy`` 
(``_pyentropy`` on windows) directory in the users home directory. To 
override this and use a custom location (for example to share the folder 
between users) you can put a configuration file ``.pyentropy.cfg`` 
(``pyentropy.cfg`` on windows) file in the home directory with the 
following format::

    [maxent]
    cache_dir = /path/to/cache
    
:func:`pyentropy.maxent.get_config_file()` will show where it is looking for the config
file.

The probability vectors for a finite-alphabet space of ``n`` variables with
``m`` possible values is a length ``m**n-1`` vector ordered such that the 
value of the index is equal to the decimal value of the input state 
represented, when interpreted as a base m, length n word. eg for n=3,m=3::

    P[0] = P(0,0,0)
    P[1] = P(0,0,1)
    P[2] = P(0,0,2)
    P[3] = P(0,1,0)
    P[4] = P(0,1,1) etc.

This allows efficient vectorised conversion between probability index and 
response word using base2dec, dec2base. The output is in the same format.

"""
import time
import os
import sys
import cPickle
import numpy as np
import scipy as sp
import scipy.io as sio
import scipy.sparse as sparse
import scipy.optimize as opt
# umfpack disabled due to bug in scipy
# http://mail.scipy.org/pipermail/scipy-user/2009-December/023625.html
#try:
    #import scikits.umfpack as um
    #HAS_UMFPACK = True
#except:
    #HAS_UMFPACK = False
HAS_UMFPACK = False
from scipy.sparse.linalg import spsolve, use_solver
use_solver(useUmfpack=False)
from utils import dec2base, base2dec
import ConfigParser

def get_config_file():
    """Get the location and name of the config file for specifying
    the data cache dir. You can call this to find out where to put your
    config.

    """
    if sys.platform.startswith('win'):
        cfname = '~/pyentropy.cfg'
    else:
        cfname = '~/.pyentropy.cfg'
    return os.path.expanduser(cfname)

def get_data_dir():
    """Get the data cache dir to use to load and save precomputed matrices"""
    # default values
    if sys.platform.startswith('win'):
        dirname = '~/_pyentropy'
    else:
        dirname = '~/.pyentropy'
    # try to load user override
    config = ConfigParser.RawConfigParser()
    cf = config.read(get_config_file())
    try:
        data_dir = os.path.expanduser(config.get('maxent','cache_dir'))
    except (ConfigParser.NoSectionError, ConfigParser.NoOptionError):
        data_dir = os.path.expanduser(dirname)

    # check directory exists
    if not os.path.isdir(data_dir):
        try:
            os.mkdir(data_dir)
        except:
            print "ERROR: could not create data dir. Please check your " + \
                  "configuration."
            raise
    return data_dir

#
# AmariSolve class
#
class AmariSolve:
    """A class for computing maximum-entropy solutions.

    When the class is initiliased the coordinate transform matrices are loaded
    from disk, if available, or generated.

    See module docstring for location of cache directory.
    
    An instance then exposes a solve method which returns the maximum entropy
    distribution preserving marginal constraints of the input probability 
    vector up to a given order k. 

    This class computed the full transformation matrix and so can compute 
    solutions for any order.
   
    """

    def __init__(self, n, m, filename='a_', local=False, confirm=True):
        """Setup transformation matrix for given parameter set.

        If existing matrix file is found, load the (sparse) transformation
        matrix A, otherwise generate it.

        :Parameters:
          n : int
            number of variables in the system
          m : int
            size of finite alphabet (number of symbols)
          filename : {str, None}, optional
            filename to load/save (designed to be used by derived classes).
          local : {False, True}, optional 
            If True, then store/load arrays from 'data/' directory in 
            current working directory. Otherwise use the package data dir
            (default ~/.pyentropy or ~/_pyentropy (windows))
            Can be overridden through ~/.pyentropy.cfg or ~/pyentropy.cfg 
            (windows)
          confirm : {True, False}, optional
            Whether to prompt for confirmation before generating matrix

        """

        #if np.mod(m,2) != 1:
         #   raise ValueError, "m must be odd"

        try: 
            k = self.k
        except AttributeError:
            self.k = n
            
        self.n = n
        self.m = m
        self.l = (m-1)/2
        # full dimension of probability space
        self.fdim = m**n
        # dimension of arrays (-1 dof)
        self.dim = self.fdim - 1

        filename = filename + "n%im%i"%(n,m) 
        if local:
            self.filename = os.path.join(os.getcwd(), 'data', filename)
        else:
            self.filename = os.path.join(get_data_dir(), filename)

        # if file exists load (matrix A)
        # must be running in correct directory
        if os.path.exists(self.filename+'.mat'):
            loaddict = sio.loadmat(self.filename+'.mat')
            self.A = loaddict['A'].tocsc()
            self.order_idx = loaddict['order_idx'].squeeze()
        elif confirm:
            inkey = raw_input("Existing .mat file not found..." +
                              "Generate matrix? (y/n)")
            if inkey == 'y':
                # else call matrix generation function (and save)
                self._generate_matrix()
            else:
                print "File not found and generation aborted..."
                print "Do not use this class instance."
                return None
        else:
            # just generate it without confirmation
            self._generate_matrix()

        self.B = self.A.T
        # umfpack factorisation of matrix
        if HAS_UMFPACK:
            self._umfpack()

        return None

    def _umfpack(self):
        self.umf = um.UmfpackContext()
        self.umf.numeric(self.B)

    def _calculate_orders(self):
        k = self.k
        n = self.n
        m = self.m
        dim = self.dim
        
        # Calculate the length of each order
        self.order_idx       = np.zeros(n+2, dtype=int) 
        self.order_length    = np.zeros(n+1, dtype=int)
        self.row_counter     = 0

        for ordi in xrange(n+1):    
            self.order_length[ordi] = (sp.misc.comb(n, ordi+1, exact=1) *
                                        ((m-1)**(ordi+1)))
            self.order_idx[ordi] = self.row_counter
            self.row_counter += self.order_length[ordi]

        self.order_idx[n+1] = dim+1

        # Calculate nnz for A
        # not needed for lil sparse format
        x = (m*np.ones(n))**np.arange(n-1,-1,-1)
        x = x[:k]
        y = self.order_length[:k]
        self.Annz = np.sum(x*y.T)
        
    def _generate_matrix(self):
        """Generate A matrix if required"""
        k = self.k
        n = self.n
        m = self.m
        dim = self.dim

        self._calculate_orders()

        self.A = sparse.dok_matrix((self.order_idx[k],dim))

        self.row_counter = 0
        for ordi in xrange(k):
            self.nterms = m**(n - (ordi+1))
            self.terms = dec2base(np.c_[0:self.nterms,], m, n-(ordi+1))
            self._recloop((ordi+1), 1, [], [], n, m)
            print "Order " + str(ordi+1) + " complete. Time: " + time.ctime()

        # save matrix to file
        self.A = self.A.tocsc()
        savedict = {'A':self.A, 'order_idx':self.order_idx}
        sio.savemat(self.filename, savedict)

    def _recloop(self, order, depth, alpha, pos, n, m, blocksize=None):
        terms = self.terms
        A = self.A
        if not blocksize:
            blocksize = self.nterms

        # starting point for position loop
        if len(pos)==0:
            pos_start = 0
        else:
            pos_start = pos[-1] + 1

        # loop over alphabet
        for ai in xrange(1, m):
            alpha_new = list(alpha)
            alpha_new.append(ai)

            # loop over position
            for pi in xrange(pos_start, (n-(order-depth))):
                pos_new = list(pos)
                pos_new.append(pi)

                # add columns?
                if depth == order:
                    # special case for highest order
                    # (can't insert columns into empty terms array)
                    if order==n:
                        cols = base2dec(np.atleast_2d(alpha_new),m)[0]-1
                        A[self.row_counter, cols] = 1
                    else:    
                        # add columns (insert and add to sparse)
                        ins = np.tile(alpha_new,(blocksize,1))
                        temp = terms
                        for coli in xrange(order):
                            temp = inscol(temp, np.array(ins[:,coli],ndmin=2).T, pos_new[coli])

                        cols = (base2dec(temp,m)-1).tolist()

                        A[self.row_counter, cols] = 1;

                    self.row_counter += 1
                else:
                    self._recloop(order, depth+1, alpha_new, pos_new, n, m, blocksize=blocksize)

    def solve(self,Pr,k,eta_given=False,ic_offset=-0.01, **kwargs):
        """Find maxent distribution for a given order k
        
        :Parameters:
          Pr : (fdim,)
           probability distribution vector
          k : int
            Order of interest (marginals up to this order constrained)
          eta_given : {False, True}, optional
            Set this True if you are passing the marginals in Pr instead of 
            the probabilities
          ic_offset : float, oprtional
            Initial condition offset for the numerical optimisation. If you
            are having trouble getting convergence, try playing with this. 
            Usually making it smaller is effective (ie -0.00001)

        :Returns:
          Psolve : (fdim,)
            probability distribution vector of k-th order maximum entropy
            solution


        """
        if len(Pr.shape) != 1:
            raise ValueError, "Input Pr should be a 1D array"
        if not eta_given and Pr.size != self.fdim:
            raise ValueError, "Input probability vector must have length fdim (m^n)"
        if eta_given:
            if Pr.size != self.dim:
                raise ValueError, "Input eta vector must have length dim (m^n -1)"
        else:
            if Pr.size != self.fdim:
                raise ValueError, "Input probability vector must have length fdim (m^n)"
            if not np.allclose(Pr.sum(), 1.0):
                raise ValueError, "Input probability vector must sum to 1"


        l       = self.order_idx[k].astype(int)
        theta0  = np.zeros(self.order_idx[-1]-self.order_idx[k]-1)
        x0      = np.zeros(l)+ic_offset 
        sf      = self._solvefunc

        jacobian = kwargs.get('jacobian',True)

        Asmall = self.A[:l,:]
        Bsmall = Asmall.T
        if eta_given:
            eta_sampled = Pr[:l]
        else:
            eta_sampled = Asmall*Pr[1:]

        if jacobian:
            self.optout = opt.fsolve(sf, x0, (Asmall,Bsmall,eta_sampled, l), 
                fprime=self._jacobian, col_deriv=1, full_output=1)
        else:
            self.optout = opt.fsolve(sf, x0, (Asmall,Bsmall,eta_sampled, l), 
                full_output=1)

        #self.optout = opt.leastsq(sf, x0, (Asmall,Bsmall,eta_sampled), 
                #full_output=1)
        the_k = self.optout[0]

        print "order: " + str(k) + \
                " ierr: " + str(self.optout[2]) + " - " + self.optout[3]
        print "fval: " + str(np.mean(np.abs(self.optout[1]['fvec']))),
        # extra debug info for jacobian 
        print "nfev: %d" % self.optout[1]['nfev'],
        try:
            print "njev: %d" % self.optout[1]['njev']
        except KeyError:
            print ""
        Psolve = np.zeros(self.fdim)
        Psolve[1:] = self._p_from_theta(np.r_[the_k,theta0])
        Psolve[0] = 1.0 - Psolve.sum()
        return Psolve

    def _solvefunc(self, theta_un, Asmall, Bsmall, eta_sampled, l):
        b = np.exp(Bsmall*theta_un)
        y = eta_sampled - ( (Asmall*b) / (b.sum()+1) )
        return y

    def _jacobian(self, theta, Asmall, Bsmall, eta_sampled, l):
        x = np.exp(Bsmall*theta)
        p = Asmall*x
        q = x.sum() + 1

        J = np.outer(p,p)
        xd = sparse.spdiags(x,0,x.size,x.size,format='csc')
        qdp = (Asmall * xd) * Bsmall
        qdp *= q
        J = J - qdp
        J /= (q*q)

        return J

    def _p_from_theta(self, theta):
        """Internal version - stays in dim space (missing p[0])"""
        pnorm = lambda p: ( p / (p.sum()+1) )
        return pnorm(np.exp(self.A.T*theta))

    def p_from_theta(self, theta):
        """Return full ``fdim`` p-vector from ``fdim-1`` length theta"""
        p = np.zeros(self.fdim)
        p[1:] = self._p_from_theta(theta)
        p[0] = 1.0 - p.sum()
        return p

    def theta_from_p(self, p):
        """Return theta vector from full probaility vector"""
        b = np.log(p[1:]) - np.log(p[0])
        if HAS_UMFPACK:
            # use prefactored matrix
            theta = self.umf.solve(um.UMFPACK_A, self.B, b, autoTranspose=True)
        else:
            theta = spsolve(self.B, b)
        # add theta(0) or not?
        return theta

    def eta_from_p(self, p):
        """Return eta-vector (marginals) from full probability vector"""
        return self.A*p[1:]


def inscol(x,h,n):
    xs = x.shape
    hs = h.shape
 
    if hs[0]==1:    # row vector
        h=h.T
        hs=h.shape

    if n==0:
        y = np.hstack((h,x))
    elif n==xs[1]:
        y = np.hstack((x,h))
    else:
        y = np.hstack((x[:,:n],h,x[:,n:]))

    return y


def order1direct(p,a):
    """Compute first order solution directly for testing"""
    if p.size != a.fdim:
        raise ValueError, "Probability vector doesn't match a.fdim"

    # 1st order marginals
    marg = a.eta_from_p(p)[:a.order_idx[1]]
    # output
    p1 = np.zeros(a.fdim)

    the1pos = lambda x,v: ((v-1)*a.n)+x

    # loop over all probabilities (not p(0))
    for i in range(1,a.fdim):
        Pword = dec2base(np.atleast_2d(i).T,a.m,a.n)

        # loop over each variable
        for j in range(a.n):

            # this value
            x = Pword[0][j]
            if x!=0:
                # this is a normal non-zero marginal
                factor = marg[the1pos(j,x)]
            else:
                # this is a zero-value marginal
                factor = 1 - marg[the1pos(j,np.r_[1:a.m])].sum()

            if p1[i]==0:
                # first entry
                p1[i] = factor
            else:
                p1[i] *= factor

    # normalise
    p1[0] = 1.0 - p1.sum()
    return p1